Isolation of human mesenchymal stem cells: Bone marrow versus umbilical cord blood

Article in Haematologica - November 2001
Source: PubMed

CITATIONS
282

READS
1,886

6 authors, including:

Katia Mareschi
Università degli Studi di Torino
65 PUBLICATIONS 3,164 CITATIONS
SEE PROFILE

Massimo Aglietta
Institute for Cancer Research and Treatment
505 PUBLICATIONS 12,862 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

PdX as model to tailor therapy on selected cancer patients View project

transplantation View project

All content following this page was uploaded by Katia Mareschi on 29 May 2014.
The user has requested enhancement of the downloaded file.
Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood

We attempted the isolation and characterization of mesenchymal stem cells (MSCs) from bone marrow (BM) and umbilical cord blood (UCB) in a medium with 10% fetal bovine serum (FBS) and 10% horse serum. In the same conditions it was possible to isolate MSCs from bone marrow but not from UCB.

In addition to hematopoietic stem cells, bone marrow also contains mesenchymal stem cells which contribute to the regeneration of mesenchymal tissues, such as bone cartilage, adipose, muscle, tendon, stroma and neural cells. The existence of mesenchymal stem cells in cord blood is the object of intense discussion.

In this study we tried to isolate and characterize MSCs from bone marrow and, using the same culture conditions, from UCB. Thirty-five bone marrow and 58 full-term cord blood samples were harvested. Mononuclear cells were isolated by a Percoll density gradient and cultured in medium with 10% FBS and 10% horse serum. Morphology, immunophenotype and cytokine m-RNA expression were analyzed on adherent cells at every passage. Some cells were cultured under conditions that were favorable for adipogenic, chondrogenic and osteogenic differentiation as described by Pittenger et al. Differentiated cells were analyzed by cytochemical staining and by m-RNA specific lineage expression by reverse transcription polymerase chain reaction (RT-PCR). Our results showed that both BM and UCB-derived mononuclear cells, in the same culture conditions, were able to generate an adherent layer. In BM samples the adherent layer was initially formed by individual cells or colonies composed of a few fibroblast-like cells, which rapidly reached confluence and grew exponentially. BM adherent cells were negative for CD45, CD14 and CD34 hematopoietic antigens (Table 1). Conversely, the number and viability of cells in UCB samples rapidly decreased at each passage. The UCB adherent cell immunophenotype analysis was quite different from that of the bone marrow analysis. Indeed, cord blood cells were CD45, CD14, CD31 positive and CD34, CD1a, CD80 negative (Table 1). This contrasts with results from Gutierrez et al. who reported that the UCB monolayer contained at least 60% dendritic cells: we found no evidence of dendritic cells in the UCB monolayer. Their culture conditions, however, differed from ours because they isolated the adherent cell population by Ficoll gradient and cultivated them as a dexter long-term culture.

We analyzed the m-RNA expression of two interleukins (IL-6 and IL-11) that are constitutively secreted by MSCs and are stimulators of hematopoiesis and the m-RNA expression of tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) that are pleiotropic cytokines principally produced by monocyte-macrophages. BM adherent cells expressed IL-6 and IL-11 but not TGF-β1 or TNF-α m-RNA. In contrast, UCB-adherent cells expressed TGF-β1, TNF-α and IL-6. The absence of IL-11, produced by mesenchymal cells confirmed the absence of MSCs in the UCB samples. TGF-β1 and TNF-α m-RNA was probably expressed by monocytes-macrophages present in the adherent UCB monolayer. Moreover, the presence of multinucleated cells in UCB adherent cultures were strongly positive for tartrase-resistant acid phosphatase (TRAP) suggested the spontaneous differentiation of monocytes-macrophages into osteoclasts as described by Erices et al.

Table 1. Immunophenotype analysis of BM and UCB adherent monolayers.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CD45 Median value</th>
<th>CD14 Median value</th>
<th>CD34 Median value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM 1st passage</td>
<td>2.21% (1.20-11.65%)</td>
<td>1.06% (0.57-3.48%)</td>
<td>0.00% (0.00-1.80%)</td>
</tr>
<tr>
<td>BM 2nd passage</td>
<td>1.35% (0.00-1.70%)</td>
<td>0.93% (0.00-1.70%)</td>
<td>0.00% (0.00-0.50%)</td>
</tr>
<tr>
<td>UCB 1st passage</td>
<td>77.00 (21.00-98.90%)</td>
<td>17.10% (0.00-80.00%)</td>
<td>0.50% (0.00-2.90%)</td>
</tr>
<tr>
<td>UCB 2nd passage</td>
<td>87.57% (34.00-98.10%)</td>
<td>30.50% (2.90-83.80%)</td>
<td>0.00% (2.90-83.80%)</td>
</tr>
</tbody>
</table>

In conclusion, BM contained mesenchymal stem cells that could easily be expanded and induced to differentiate for therapeutic use while the UCB adherent monolayer displayed the morphology and the characteristics of hematopoietic cells and not those of mesenchymal cells. Our data did not agree with the findings of Erices et al. who recently identified mesenchymal progenitor cells in 25% of their UCB harvests. It should be pointed out, however, that their results were obtained using a pool of different units of pre-term UCB and, probably, in such a way as to enhance the rather low population of MSCs in pre-term UCB. In 75% of their samples the cord blood adherent cells displayed the morphology and characteristics of multinucleated...
osteoclasts, the presence of which agreed with our own findings.

Zvaifler et al. recently isolated cells from the elutriation fraction of peripheral blood that were able to adhere to plastic and glass and to grow without the addition of growth factors. Despite our findings, the encouraging results obtained by both Zvaifler et al. on peripheral blood and Erices et al. on pre-term UCB might be regarded as a further stimulus towards the search for mesenchymal stem cells in UCB by varying isolation and culture conditions.

Katia Mareschi, Eleonora Biasin, Wanda Piacibello,* Massimo Aglietta,* Enrico Madon, Franca Fagioli
Department of Paediatrics, University of Turin; *Department of Biomedical Sciences and Human Oncology, University of Turin, IRCCS Candiolo, Italy

Acknowledgments: this work was partially supported by grants from the "Associazione Italiana per la Ricerca sul Cancro" (AIRC, Milan) and MURST ex 60% University of Turin to EM and Associazione Donatrici Italiane Sangue di Cordone Ombeilciale (ADISCO, Turin).

Key words: mesenchymal stem cell, bone marrow, cord blood.
Correspondence: Dr. Franca Fagioli, Department of Paediatrics, University of Turin. Piazza Polonia, 94, 10126 Turin, Italy. Phone: international +39.011.3135566. Fax: international +39.011.3135415. E-mail: fagioli@pediatria.unito.it

References