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1. Introduction

Recently, the effective string description of the interquark potential in lattice gauge the-

ories (LGT) has attracted a renewed interest [1 – 18]: the increased computational power

and improved algorithm efficiency [19 – 21] have allowed to perform stringent numerical

tests of the model predictions, while a better understanding of the theoretical aspects was

achieved [22 – 26]. One of the plenary talks at the XXIII International Symposium on

Lattice Field Theory held in Trinity College, Dublin, in July 2005 was devoted to the

topic [27].

Many of the mentioned studies are focused on the behaviour of the two-point Polyakov

loop correlation function: the numerical results for the free energy associated with a pair of

static external sources in a pure gauge theory were compared with predictions from effective

string models, as a function of the interquark distance r and of the inverse temperature L.

One of the simplest effective string theories is based on the action originally formulated

by Nambu and Goto [28, 29]: it is a purely bosonic model, which, despite the difficulties

related to anomaly and non-renormalisability, has a straightforward geometric interpre-

tation, and for which the leading order (LO) and next-to-leading order (NLO) terms in

an expansion around the classical, long-string configuration agree with the effective model

proposed by Polchinski and Strominger [25], as it was pointed out in [23, 11]. Furthermore,

the Nambu-Goto action also appears (together with other terms) in the derivation of an

effective description for QCD [30, 31].

In this paper, as a further step in this direction, we compare the Nambu-Goto model

with a set of high precision results on the interface free energy of the Ising spin model

in three dimensions with periodic boundary conditions in the directions parallel to the
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interface. As it will be discussed in detail in section 2, an interface can be forced into

the Ising spin system by introducing a seam of antiferromagnetic bonds through a whole

cross-section of the system. Via duality, Wilson loops and Polyakov loop correlators in

the Z2 gauge theory are related with interfaces in the Ising spin model: Wilson loops are

mapped into interfaces with fixed boundary conditions in both directions, while Polyakov

loop correlators are mapped into interfaces with periodic boundary conditions in one di-

rection and fixed boundary conditions in the other direction. Hence, the present study is

complementary to our previous work on the Polyakov-loop correlator; the periodic bound-

ary conditions in both directions allow us to disentangle the pure string contributions from

other effects, possibly (directly or indirectly) induced by fixed boundaries.

Besides these reasons of interest, which are primarily motivated by the study of confine-

ment in lattice gauge theories, fluid interfaces are also very interesting because they have

several experimental realizations, ranging from binary mixtures to amphiphilic membranes

(for a review see for instance [32, 33]). Moreover the Nambu-Goto model (which is based

on the assumption that the action of a given string configuration is proportional to the area

of the surface spanned by the string during its time-like evolution) is closely related [33]

to the so-called capillary wave model [34], which was proposed several decades ago (actu-

ally before the Nambu-Goto action), as a tool to describe interfaces in three-dimensional

statistical physics systems.

Finally, it is interesting to remark that interfaces in spin models are also naturally

connected to maximal ’t Hooft loops in lattice gauge theory — see, for instance, [35, 36].

The problem of the interface with periodic boundary conditions has been studied in

a number of articles, particularly in the early Nineties of last century — see [37, 38] and

references therein. The level of precision in these studies favoured the NLO prediction of

the Nambu-Goto model against the Gaussian approximation, however it did not allow for

a precise quantitative check of the NLO prediction itself.

The increase in computer power and a slightly smaller correlation length compared

with [37, 38] allow us a significantly better statistical control of the next to leading order

corrections considered here. In particular, our present statistics is about 1000 times larger

than that of [37].

The structure of this paper is the following: in section 2 we briefly describe the in-

troduction of an interface in the 3D Ising model, and the associated free energy; next, in

section 3, we describe the numerical algorithm used in this work. Section 4 offers a review

of known theoretical and numerical results, while our new results are presented in section 5.

Finally, we summarise our conclusions in section 6.

2. The 3D Ising model and the interface free energy

The confined phase of the Z2 gauge model in 3D is mapped by duality into the low temper-

ature phase of the Ising spin model, where the global symmetry is spontaneously broken

and a non-vanishing magnetisation exists. According to the duality transformation, the

observables of the gauge theory can be represented introducing an antiferromagnetic cou-

pling for suitable sets of bonds in the spin model: these bonds pierce a surface having the
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original source lines as its boundary. This procedure can be naturally extended by intro-

ducing a seam of antiferromagnetic bonds throughout a whole time-slice on the lattice.

Effectively, this amounts to imposing antiperiodic boundary conditions along the “time-

like” direction, and induces an interface separating a domain of positive from a domain of

negative magnetisation.1

These interfaces are the main subject of our analysis; to define the notations, we

consider a periodic, cubic lattice with sizes L0 × L1 × L2. Let (x0, x1, x2) denote the

coordinates of the lattice sites, with xµ = 0, . . . , Lµ for µ = 0, 1, 2. The action is given by:

S = −β
∑

x

∑

µ

Jx,µ sxsx+µ̂ . (2.1)

Let us focus on two possible choices for the Jx,µ variables:

• setting Jx,µ = 1 for all x, µ, we obtain a system with periodic boundary conditions

in all directions; the corresponding partition function is denoted by Zp;

• setting Jx,µ = −1 for x = (L0, x1, x2) and µ = 0, and Jx,µ = +1 for all the remaining

links we obtain a system with antiperiodic boundary conditions in the x0-direction

and periodic boundary conditions in the remaining directions; the corresponding

partition function is denoted by Za.

The latter choice induces an interface in the system, whose free energy2 is given — in first-

approximation — by the difference between the free energy of the system with anti-periodic

and periodic boundary conditions: F
(0)
s = − ln Za

Zp
. This quantity has a characteristic

L0-dependence, due the fact that the interface induced by the anti-periodic boundary

conditions enjoys full translational invariance in the x0-direction. This entropy effect can

be easily taken into account defining:

F (1)
s = − ln

Za

Zp

+ ln L0 . (2.2)

However, for large values of L0, an arbitrary odd (even) number of interfaces can appear in

the system with antiperiodic (periodic) boundary conditions; assuming that the interfaces

do not interact,3 the reduced interface free energy can be defined as [40]:

F (2)
s = ln L0 − ln

(

1

2
ln

1 + Za/Zp

1 − Za/Zp

)

, (2.3)

which is used in the following.

Finally, we would like to remark that the ratio of partition functions Za/Zp is directly

related with the tunneling correlation length in a system with cylindrical geometry; for a

detailed discussion see section 4.2 of [37].

1An alternative way to generate an interface in the Ising spin system would require to fix all the spin

variables on the two opposite time-slices at the boundaries to the values +1 and −1, respectively; however

such Dirichlet boundary conditions would lead to rather large finite-size effects. Further methods to deter-

mine the interface free energy are discussed in the literature. For a collection of articles on this subject see

e.g. [39].
2For convenience, we use the so-called “reduced free energy”, which is dimensionless.
3This assumption is reasonable for a low density of interfaces.

– 3 –



J
H
E
P
0
3
(
2
0
0
6
)
0
8
4

3. The simulation algorithm

There are different methods available to compute the ratio of partition functions Za/Zp by

Monte Carlo simulations.

• Integration of the energy difference Ea −Ep over βs, starting from a value of βs in the

high temperature phase of the Ising spin model, where the interface tension vanishes.

(See e.g. [38] and references therein.)

• Snake-algorithm [21, 20]: A sequence of systems that interpolate between the periodic

and anti-periodic case is defined, introducing the defects one-at-a-time; the Za/Zp

ratio can be factored as:

Za

Zp

=
ZL1×L2

ZL1×L2−1
· ZL1×L2−1

ZL1×L2−2
· . . . · Z1

Z0
, (3.1)

where Zk is the partition function associated with the system where k defects have

been introduced (so that ZL1×L2
= Za, while Z0 = Zp). The free energy differences

between Zk and Zk+1 can be easily computed, as the two systems only differ by the

value of Jx,µ on a single bond: since in general there is a sufficiently large overlap be-

tween configurations contributing to Zk and Zk+1, importance sampling with respect

to the denominators on the right-hand side of eq. (3.1) is possible. However, for any

0 < k < L1 × L2 the translational invariance in the x0-direction is broken. However,

for k sufficiently close to L1 × L2, the entropy gain of “depinning” becomes compa-

rable with the energy cost and the interface starts to move along the lattice in the

x0-direction. This causes severe autocorrelation problems in a numerical simulation

of these systems.

These two choices are quite similar in spirit: the free energy difference is evaluated from

the sum of many small contributions that can be easily computed. Both methods allow

to investigate large interfaces, and the computational effort required for a given precision

grows only with a power of the lattice size. However, the obvious practical difficulty with

both methods is that a large number of individual simulations have to be run.

In the present work, we have measured the ratio of the partition functions Za/Zp di-

rectly, using a variant of the boundary flip algorithm [40]. As in [41], we did not actually

change the boundary conditions during the simulation: rather, we counted the configu-

rations with periodic boundary conditions that would allow for this flip. This method is

efficient as long as Za/Zp is not too small. Since Za/Zp ' exp(−σL1L2), σL1L2 . 10 is

a rather strict upper bound on the interface size that can be reached with this method,

since the signal to noise ratio decays exponentially with the interface area.4 However, these

lattice sizes are sufficient for our purpose as we shall see in the following.

For the update of the configuration, we have used the standard single cluster algo-

rithm [42]. For most of our simulations we have used the G05CAF random number genera-

tor of the NAG library, which is a linear congruential generator characterised by a = 1313,

4Due to our enormous statistics we could obtain a meaningful result for interface areas with σL1L2

slightly larger than 10.
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c = 0 and modulus m = 259. As a check of the reliability of the random number generator,

we have repeated a few of the runs for βs = 0.236025 with the RANLUX generator discussed

in [43], and the results are consistent with those obtained before with the G05CAF gener-

ator. Since there is no hint of a problem with the G05CAF, and the RANLUX generator

is more time-consuming, we continued with the G05CAF generator.

4. Summary of results given in literature

In the following subsections we review the theoretical expectations and the numerical results

which are available in the literature.

4.1 Theoretical expectations

A possible description for the dynamics of the interface in the continuum is provided by

the Nambu-Goto model [28, 29]: it is based on the hypothesis that the action associated

with a given interface configuration is proportional to the area of the interface itself:

S = σ

∫

d2ξ
√

det gαβ , (4.1)

where ξ are the surface coordinates, while gαβ is the metric induced by the embedding in

the three-dimensional space. For sake of simplicity, it is assumed that the interface can be

parametrised in terms a single-valued, real function describing the transverse displacement

of the surface with respect to a reference plane. This model is essentially the same as

the capillary wave model [33], with the further assumption that σ does not depend on

the direction of the normal to the infinitesimal surface element. Here we neglect the

theoretical difficulties associated with the fact that the model is actually anomalous, and

non-renormalisable; in the following of the discussion, the model will be regarded as an

effective theory expected to describe the dynamics of the interface for sufficiently large

values of σL1L2 (i.e. of the minimal interface area, in dimensionless units).

A perturbative expansion in powers of (σL1L2)
−1 yields the following result for the

partition function associated with the interface:

Z =
λ√
u

e−σL1L2

∣

∣

∣
η (iu) /η (i)

∣

∣

∣

−2
[

1 +
f(u)

σL1L2
+ O

(

1

(σL1L2)2

)]

, (4.2)

This expression was obtained for the first time in [44] with a zeta-function regularization

and then re-obtained in [37, 45] with three other different types of regularization. In

eq. (4.2), λ is a parameter that can be predicted by an argument from perturbation theory

of the φ4 model in three dimensions (see below), τ = iu = iL2/L1 is the modulus of the

torus associated with the cross-section of the system, η is Dedekind’s function:

η(τ) = q1/24
∞
∏

n=1

(1 − qn) , q ≡ exp(2πiτ) , (4.3)

and

f (u) =
1

2

{

[π

6
uE2 (iu)

]2
− π

6
uE2 (iu) +

3

4

}

, (4.4)
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βs βg Nt σ ξ m

0.276040 0.65608 2 0.204864(9) 0.644(1) 0.85701

0.236025 0.73107 4 0.044023(3) 1.456(3) 0.63407

0.226102 0.75180 8 0.0105241(15) 3.09(1) 0.45311

Table 1: Summary of numerical estimates for basic quantities at the values of βs studied in this

work. βg is the coupling of the Z2 gauge theory that corresponds, via duality, to the βs of the Ising

spin model. Nt is the inverse of the finite temperature phase transition, σ is the interface tension,

ξ the bulk correlation length and m the magnetisation.

where E2(τ) is the first Eisenstein series:

E2(τ) = 1 − 24
∞

∑

n=1

n qn

1 − qn
, q ≡ exp(2πiτ) , (4.5)

In most of our simulations, we have chosen u = L2/L1 = 1; for this choice one gets:

f(1) = 1/4.

In the following we shall be interested in the interface free energy, which, for square

lattices of size L1 = L2 ≡ L takes the form:

Fs = σL2 − ln λ − 1

4σL2
+ O

(

1

(σL2)2

)

. (4.6)

This is the theoretical expectation which, in the following section, we shall compare with

our numerical results for F
(2)
s — see eq. (2.3).

The value of λ cannot be predicted by the effective interface model, however pertur-

bation theory of the 3D φ4 model [46, 47, 38] gives:

ln λ =
1

2
ln σ − ln 2 + ln S , (4.7)

with:

S =
4

√

1 − ur

4π

(

39
32 − 15

16 ln 3
)

· Γ(3/4)

Γ(1/4)
. (4.8)

Using ur = 14.3(1) [48], one gets G ≡ ln 2 − lnS ≈ 0.29.

4.2 Numerical results

In table 1 we have summarised numerical estimates for basic quantities at the values of βs

studied in the present work. The result for the critical finite temperature phase transition

Nt is taken from table 4 of [49]. The interface tension σ is taken from table 8 of [9]. Note

that in [9] only the leading order quantum corrections were used to obtain these results.

The system sizes were large enough to safely ignore NLO contributions. The result for the

exponential correlation length ξ is taken from table 1 of [9]. These numbers were obtained

interpolating the results of [50, 48] and from the analysis of the low temperature series [51].

The magnetisation m has been computed from the interpolation formula eq. (10) of [52].
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L0 L1 L2 stat/100000 Fs

6 6 6 500 3.37985(29)

8 6 6 500 3.38689(26)

10 6 6 500 3.38989(22)

12 6 6 500 3.39067(20)

18 6 6 500 3.39079(17)

7 7 7 500 3.97243(37)

10 7 7 1000 3.99356(22)

14 7 7 500 3.99783(26)

21 7 7 599 3.99802(19)

24 8 8 500 4.67900(28)

18 9 9 1000 5.44197(35)

27 9 9 1000 5.44170(28)

30 10 10 910 6.29015(44)

22 11 11 1000 7.22382(78)

33 11 11 1000 7.22219(64)

36 12 12 1000 8.2441(10)

26 13 13 1000 9.3487(21)

39 13 13 1000 9.3481(17)

42 14 14 1000 10.5403(30)

Table 2: Results for the interface free energy Fs as defined in eq. (2.3) at βs = 0.236025. L0,

L1 and L2 give the linear sizes of the lattice and stat is the number of measurements. For each

measurement, 10 single cluster updates were performed.

5. New numerical results

In this section we present our new numerical results.

First we studied the finite L0 effects in the interface free energy Fs as defined by

eq. (2.3). To this end, we run a series of simulations at βs = 0.236025 with L1 = L2.

Writing Za and Zp in terms of eigenvalues of the transfer matrix (for discussion see e.g.

section 4.2 of [37]), one sees that the leading corrections in L0 to Fs(L1, L2) vanish as

exp(−L0/ξ). Indeed, the results in table 2 show that the results for Fs(L1, L2) quickly

converge with increasing L0. For all values of L1 = L2 given in table 2, the choice L0 = 3L1

should guarantee that corrections due to the finiteness of L0 are far smaller than the

statistical errors of our numerical estimates. In the following, we shall use L0 = 3L1 also

for other values of βs. In table 3 and in table 4 we present our results for βs = 0.27604 and

βs = 0.226102, respectively.

5.1 Fitting the data

In figure 1 we have plotted Fs − σL2 + ln(σ)/2 as a function of the dimensionless quantity√
σL, where L = L1 = L2. The values for σ are taken from table 1. As βs → βc, in the

scaling limit, the curves for different values of βs should fall on top of each other. While

– 7 –
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L0 L1 L2 Fs

12 4 4 4.29672(23)

15 5 5 6.18752(56)

18 6 6 8.4669(16)

21 7 7 11.1540(57)

24 8 8 14.239(25)

Table 3: Results for the interface free energy Fs as defined in eq. (2.3) at βs = 0.27604. For all

the sets of parameters 108 measurements were performed; for each measurement 5 single cluster

updates were performed.

L0 L1 L2 stat/100000 Fs

30 10 10 1000 3.53042(11)

33 11 11 1000 3.78620(11)

36 12 12 1000 4.05312(12)

39 13 13 1000 4.33451(13)

42 14 14 1000 4.63149(15)

45 15 15 1000 4.94717(17)

48 16 16 1000 5.28138(19)

51 17 17 1000 5.63492(22)

54 18 18 1000 6.00959(27)

57 19 19 1000 6.40446(32)

60 20 20 1000 6.82040(38)

63 21 21 1000 7.25587(46)

66 22 22 1326 7.71339(50)

69 23 23 999 8.19094(72)

72 24 24 1033 8.68895(88)

75 25 25 1000 9.2063(12)

78 26 26 1050 9.7462(14)

81 27 27 1017 10.3062(19)

84 28 28 1015 10.8894(25)

87 29 29 1022 11.4881(33)

90 30 30 1008 12.1181(45)

Table 4: Results for the interface free energy Fs as defined in eq. (2.3) at βs = 0.226102. For

each measurement 20 single cluster updates performed. In total, the simulations whose results are

summarised in this table took about 2 years of CPU-time on a single PC with an Athlon XP 2000+

CPU.

the curve for βs = 0.27604 is clearly different from the other two, those for βs = 0.236025

and 0.226102 are close to each other — their difference being approximately constant. We

have checked that these observations still hold when varying σ within the quoted errors.

One should note that the LO effective string prediction corresponds to Fs − σL2 + ln(σ)/2

being constant.
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      =0.236025  β    s
      =0.226102  β    s

Figure 1: Fs − σL2 + 0.5 lnσ as function of
√

σL for βs = 0.226102, 0.236025 and 0.27604. In all

cases L1 = L2 = L and L0 = 3L. The values for σ are taken from table 1. We have checked that

the plot does not change significantly, when σ is varied within the quoted errorbars. The dotted

lines should only guide the eye.

Lmin c0 c2 χ2/d.o.f.

4 1.1500(14) -0.430(5) 0.81

5 1.154(5) -0.45(3) 0.92

Table 5: Results of fits with the ansatz in eq. (5.1) of the data at βs = 0.27604. The interface

tension has been fixed to σ = 0.204864.

Next we performed a more quantitative analysis of our data. Motivated by the theo-

retical prediction of eq. (4.2), we fitted our data with the ansatz:

Fs = σL2 + c0 +
c2

σL2
(5.1)

for the interface free energy. Using the interface tension σ as parameter of the fit, we get

results that are consistent with those in table 1. However, the statistical error of our new

results for σ is clearly larger than the error quoted in table 1. Also, since we are mainly

interested in the value of c2, we have fixed σ to the values given in table 1 in the following.

Our results for the remaining fit parameters c0 and c2 are shown in tables 5, 6 and 7

for βs = 0.27604, 0.236025 and 0.226102, respectively. In these fits, we have included data

for all available lattice sizes L1 = L2 = L ≥ Lmin. Throughout, we have only included data

obtained with L0 = 3L.

To estimate the effect of the error in σ, we redid the fits for βs = 0.236025 with

σ = 0.04402. This leads to slightly smaller values of c2, e.g. for Lmin = 10 we get

c2 = −0.227(11). We also repeated the fit for βs = 0.226102 using σ = 0.0105226 as

input for the interface tension. This leads to a slight decrease in c2; for instance, for

Lmin = 22 we get c2 = −0.232(15) instead of c2 = −0.227(15) for σ = 0.0105241; the error

on the value of σ that is used as input in the fits only plays a minor role.
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Lmin c0 c2 χ2/d.o.f.

7 1.9320(5) -0.1972(13) 4.22

8 1.9348(8) -0.208(3) 2.37

9 1.9383(13) -0.223(5) 0.86

10 1.9387(22) -0.225(11) 1.00

11 1.944(4) -0.258(22) 0.65

12 1.935(7) -0.195(48) 0.27

Table 6: Results of fits with the ansatz in eq. (5.1) of the data at βs = 0.236025. The interface

tension has been fixed to σ = 0.044023.

Lmin c0 c2 χ2/d.o.f.

16 2.65513(51) -0.1855(16) 7.62

17 2.65853(65) -0.1994(24) 2.49

18 2.66067(85) -0.2090(34) 1.33

19 2.6627(11) -0.2187(49) 0.73

20 2.6636(15) -0.2240(72) 0.70

21 2.6656(20) -0.235(10) 0.52

22 2.6642(27) -0.227(15) 0.50

Table 7: Results of fits with the ansatz in eq. (5.1) of the data at βs = 0.226102. The interface

tension has been fixed to σ = 0.0105241.

The result c2 ≈ −0.45 at βs = 0.27604 is clearly inconsistent with the prediction

c2 = −0.25. However, we should note that ξ < 1 and we should expect huge scaling

corrections.

The fit results for βs = 0.236025 and βs = 0.226102 have similar features. In both

cases, the value of c2 increases as Lmin is increased. Also the χ2/d.o.f. decreases as Lmin is

increased. For βs = 0.236025, χ2/d.o.f. ≈ 1 is reached at Lmin = 9, where c2 = −0.223(5).

For the slightly larger Lmin = 11 we get: c2 = −0.258(22), which is fully consistent with

the theoretical prediction.

For βs = 0.226102, χ2/d.o.f. ≈ 1 is reached at Lmin = 19, where c2 = −0.2187(49).

For Lmin = 21 we get: c2 = −0.235(10), which is consistent with the theoretical prediction

within two units of the standard deviation.

Next we fitted our data for βs = 0.226102 with the ansatz:

Fs = σL2 + c0 +
c2

σL2
+

c4

(σL2)2
(5.2)

to check possible effects of higher order corrections on the numerical results for c0 and

c2. The results are displayed in table 8. Again, we have checked that the error of the

input value for σ is not relevant. Now the numerical results for c2 are smaller than the

theoretical prediction c2 = −0.25. Adding higher order corrections to the fit does not allow

for a more accurate numerical determination of c2. However these fits clearly show that

the small deviation of c2 obtained from the fit to eq. (5.1) can be explained by higher order

corrections that are omitted in the ansatz.
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Lmin c0 c2 c4 χ2/d.o.f.

14 2.6629(10) -0.244(6) 0.103(9) 4.48

15 2.6696(14) -0.293(9) 0.187(15) 1.03

16 2.6731(20) -0.320(15) 0.240(26) 0.55

17 2.6713(27) -0.305(22) 0.207(42) 0.52

18 2.6716(37) -0.308(32) 0.214(70) 0.57

Table 8: Fit results for the ansatz in eq. (5.2) of the data for Fs at βs = 0.226102. The interface

tension has been fixed to σ = 0.0105241.

L0 L1 L2 stat/100000 Fs Fs− LO NLO

36 10 12 1000 7.1670(6) –0.0489(6) –0.0487

45 10 15 693 8.4449(12) –0.0471(12) –0.0440

54 10 18 1000 9.6976(17) –0.0493(17) –0.0439

60 10 20 1029 10.5235(25) –0.0518(25) –0.0454

66 10 22 999 11.3466(36) –0.0521(36) –0.0478

Table 9: Results for the interface free energy Fs as defined in eq. (2.3) at βs = 0.236025. Results

for L1 6= L2. We also give Fs− LO, where we have used σ = 0.044023 and c1 = 1.944 as input.

Finally, let us briefly discuss the results for c0. The results are quite stable for different

values of Lmin. Also, fits to eq. (5.1) and eq. (5.2) give consistent results. As a final result,

we quote c0 = 1.154(5), 1.944(5) and 2.665(5) for βs = 0.27604, 0.236025 and 0.226102,

respectively. Correspondingly, one gets: c0 + 1
2 ln σ = 0.361(5), 0.382(5) and 0.388(5),

which is somewhat larger than the theoretical prediction G ≈ 0.29 from [46, 38].

5.2 Results for L1 6= L2

For βs = 0.236025 we have also performed simulations for lattices with non-square cross-

section (L1 6= L2): the results of these simulations are given in table 9. In order to compare

with the theoretical prediction for the NLO contribution to Fs, we have subtracted the

classical and the leading order contribution from Fs. To this end, we have used σ =

0.044023 from table 1 and c0 = 1.944 from the fits summarised in table 6. For comparison,

in the last column of table 9 we give the theoretical prediction for the NLO contribution —

see eq. (4.2). The absolute value of the numerical results is found to be about 10% larger

than the theoretical prediction for the NLO contribution. This can be interpreted as an

effect due to higher order corrections. It is interesting to observe that such higher order

terms become more and more important as the ratio L2/L1 increases: this is an effect we

already observed in our previous analysis of the Polyakov loop correlators [1].

6. Conclusions

In this work, we studied interfaces in the 3D Ising model with periodic boundary conditions.

We compared our numerical results for the interface free energy with predictions derived

from the Nambu-Goto effective string model, which is essentially equivalent to the capillary
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wave model. Compared with previous work on the problem [37], the statistical errors are

reduced by a factor of about 30, which allows for a quantitative check of the next-to-

leading order (i.e. beyond the free string approximation) prediction. For the two coupling

values closest to the phase transition, we found for a linear extension
√

σL ' 2 of the

interface a good agreement with the next-to-leading order prediction of the Nambu-Goto

model. Expressed in terms of the inverse deconfinent temperature Nt this corresponds

to L ' 2.5Nt. In the case of the Polyakov loop correlation function we found in [1] a

similar behaviour along the compactified direction of the Polyakov loop correlator. On the

contrary, along the direction with Dirichlet boundary conditions clear deviations from the

Nambu-Goto string prediction were observed for distances of the order of 2.5Nt. In fact,

we actually found that the Nambu-Goto string fits the numerical data for the interquark

potential at low temperatures less well than its free string approximation. Even if the

presence of a boundary term in the effective string action is ruled out (at least in three

dimensions) by string duality arguments [24]5, the above comparison between the present

results and our previous analysis on the Polyakov loop correlators clearly shows that some

kind of boundary correction is present in the latter case.

By virtue of the absence of boundary effects, we think that the interface free energy

discussed in this paper is the perfect setting to study limits and merits of effective string

models and also, if possible, to improve these effective descriptions. In this respect it would

be very interesting to further analyze the deviations from the Nambu-Goto predictions

which we observe in the range
√

σL < 2. Understanding the origin of these deviations

remains one of the most intriguing challenges towards a consistent and satisfactory effective

string description of the confining potential in lattice gauge theories.
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