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Abstract. In recent years, the KDD process has been advocated to be
an iterative and interactive process. It is seldom the case that a user is
able to answer immediately with a single query all his questions on data.
On the contrary, the workflow of the typical user consists in several
steps, in which he/she iteratively refines the extracted knowledge by
inspecting previous results and posing new queries. Given this view of
the KDD process, it becomes crucial to have KDD systems that are
able to exploit past results thus minimizing computational effort. This is
expecially true in environments in which the system knowledge base is the
result of many discoveries on data made separately by the collaborative
effort of different users. In this paper, we consider the problem of mining
frequent association rules from database relations. We model a general,
constraint-based, mining language for this task and study its properties
w.r.t. the problem of re-using past results. In particular, we individuate
two class of query constraints, namely “item dependent” and “context
dependent” ones, and show that the latter are more difficult than the
former ones. Then, we propose two newly developed algorithms which
allow the exploitation of past results in the two cases. Finally, we show
that the approach is both effective and viable by experimenting on some
datasets.

1 Introduction

The problem of mining association rules and, more generally, that of extract-
ing frequent sets from large databases has been widely investigated in the last
decade [1,2,3,4,5,6,7]. These researches addressed two major issues: on one hand,
performance and efficiency of the extraction algorithms; on the other hand, the
exploitation of user preferences about the patterns to be extracted, expressed in
terms of constraints.

Constraints are widely exploited also in data mining languages, such as
in [8,9,10,4,7] where the user specifies in each data mining query, not only the
constraints that the items must satisfy, but also different criteria to create groups
of tuples from which itemsets will be extracted. Constraint-based mining lan-
guages are also the main key factor of inductive databases [11], proposed in order
to leverage decision support systems. In inductive databases, the user explores
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the domain of a mining problem submitting to the system many mining queries
in sequence, in which subsequent queries are very often a refinement of previous
ones. This constitutes for the system a huge computational workload and be-
comes a problem even more severe considering that these queries are typically
instances of iceberg queries [12]. In such systems the intelligent exploitation of
the queries previously submitted by the user becomes the key factor for a suc-
cessful exploration of the problem search space [13]. Analogously, in inductive
databases, it makes sense to try to exploit the effort already done by the DBMS
in order to speed up the execution time of new queries. Furthermore, we suppose
that the mining engine works in an environment similar to a data warehouse,
in which database content updates occur rarely and in known periods of time.
Thus, previous results are up to date and can be usefully exploited to speed up
the execution of current queries.

In this paper, we propose and evaluate an “incremental” approach to mining
that exploits the results of previous queries in order to reduce the response time
to new queries. Of course, we suppose that the system relies on an optimizer who
is entitled to recognize query equivalence and query containment relationships.
[14] describes a prototype of such an optimizer and shows that its execution time
is negligible (in the order of milliseconds).

We notice that several “incremental” algorithms have been developed in the
data mining area [15,16], but they address a different issue: how to efficiently
revise the result set of a mining query when the database source relations get
updated with new data.

In all the previous works in constraint-based mining, a somewhat implicit
assumption has always been made: properties on which users define constraints
are functionally dependent on the item to be extracted, i.e., the property is
either always true or always false for all the occurrences of a certain item in the
database. In this case, it is possible to establish the satisfaction of the constraint
considering only the properties of the item itself, that is, separately from the
context of the database in which the item is found (e.g., typically the database
transaction). In [14], we characterized the constraints on attributes that are
functionally dependent on the items extracted and called them item dependent
(ID). The exploitation of these constraints proves to be extremely useful for
incremental algorithms.

In [14] another class of constraints, namely context dependent (CD), was
introduced as well. CD constraints proved to be very difficult to be dealt with
because, even when they hold within a transaction for a particular itemset, they
do not necessarily hold for the same itemset but within another transaction.

Unfortunately, most of the state of the art algorithms [3,17,18], assume pre-
cisely that constraints do or do not hold for a given itemset database wide.

2 Preliminary Definitions and Notation

Let us consider a database instance D and let T be a database relation having
the schema TS={A1, A2, . . . , An}. A given set of functional dependencies Σ over
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the attribute domains dom(Ai), i = 1..n is assumed to be known. We denote
with ΣAi the set of attributes that are in the RHS of the functional dependencies
with Ai as LHS.

For the sake of exemplification, we consider a fixed instance of the applica-
tion domain. In particular, we will refer to a market basket analysis application
in which T is a Purchase relation that contains data about customer purchases.
In this context, TS is given by {tr, date, customer, product, category,
brand, price, qty,discount}, where: tr is the purchase transaction identifier
and the meaning of the other columns is the usual one for this kind of applica-
tion. The Σ relation is {product→ price, product → category, product →
brand, {tr, product} → qty, tr → date, tr → customer, {tr,product} →
discount}. Σproduct, the set of attributes whose values depend on product is
{price, category, brand}.

In writing a mining query, the user must specify, among the others, the
following parameters:

– The item attributes, a set of attributes whose values constitute an item, i.e.,
an element of an itemset. In the language it is allowed to specify possibly
different sets of attributes, one for the antecedent of association rules (body),
and one for the consequent (head).

– The grouping attributes needed in order to decide how tuples are grouped
for the formation of each itemset. This grouping, for the sake of generality
and expressiveness of the language, can be decided differently in each query
according to the purposes of the analysis.

– The mining constraints specify how to decide whether an association rule
meets the user needs. Since we want to allow different constraints on the
body and on the head of the association rules, we admit a distinct constraint
expressions for each part of the rule.

– An expression over a number of statistical measures used to reduce the size
of the result set and to increase the relevance of the results. This evaluation
measures are evaluated only on the occurrences of the itemsets that satisfy
the mining constraints.

By summarizing, a mining query may be described as

Q = (T, G, IB, IH , ΓB, ΓH , Ξ)

where: T is the database table; G is the set of grouping attributes; IB and IH are
the set of item attributes respectively for the body and the head of association
rules; ΓB and ΓH are boolean expressions of atomic predicates specifying con-
straints for the body and for the head of association rules; and Ξ is an expression
on some statistical measures used for the evaluation of each rule.

We define an atomic predicate to be an expression in the form:

AiθvAi

where θ is a relational operator such as <, ≤, =, >, ≥, �=, and vAi is a value from
the domain of attribute Ai. Ξ is defined to be a boolean expression in which
each term has the form
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ξθv

where ξ is a statistical measure for the itemset evaluation, v is a real value, and
θ is defined as above.

Examples of ξ are support count and frequency. The support count is the
counting of the distinct groups containing the itemset. The itemset frequency is
computed as the ratio between the itemset support count and the total number
of database groups.

A mining engine, takes a query Qi defined on an input relation T and gen-
erates a result set Ri.

Example 1. The query

Q=(Purchase, {tr}, {product}, {product},
category=’clothes’, category=’clothes’ and discount≥10%,

support count≥20 AND confidence≥0.5)

over the Purchase relation (first parameter) extracts rules formed by products in
the body (third parameter) associated to products in the head (fourth parameter),
where all the products in the rule have been sold in the same transaction (second
parameter). Moreover, each product in the body must be of type “clothes” (fifth
parameter) and be associated with discounted clothes (sixth parameter). Finally,
the support count of the returned rules must be at least 20 and the confidence of
the rules at least 0.5.

An item dependent constraint is a predicate on an attribute Ai which lies in
the dependency set of the schema of the rules (here denoted as IBH = IB∪IH , i.e.
the union of the schema of the body and of the head), i.e., ΣIBH . As a consequence,
being Ai in the dependency set of IBH , its value can be determined directly (or
indirectly, i.e., transitively) from the value of the association rules. In other
words, the verification of this kind of constraint depends on the elements of the
rule itself and not on other information stored in the transaction that make
up the “context” of the rule. For instance, if we extract association rules on
the values of the products frequently sold together in transactions, the category
of the products does not depend on the transactions, but only on the products
themselves. As explained in [14] (Lemma 1), an itemset satisfies an ID constraint
either in all the instances of the database or in none of them.

On the contrary, the verification of a context dependent constraint depends
on the contextual information that accompany the rules elements in the data-
base. For instance, in our running example, the quantity of a product sold in a
particular transaction depends on the product and on the transaction together.
Therefore, a predicate on quantity is said to be a context dependent constraint
and, in fact, its satisfaction changes depending on the particular transaction (the
context). This implies that the support count might take any value ranging from
0 to the number of occurrences of that itemset in the database. In other words,
when context dependent constraints are involved, we are obliged to evaluate the
constraints on the fact table, where the contextual information can be retrieved.
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3 An Incremental Algorithm for Item Dependent
Constraints

In a previous work [14], we showed that in case a query contains only ID con-
straints, then we can obtain the result of a newly posed query Q2 by means of
set operations (unions and intersections) on the results of previously executed
queries. We qualify this approach to itemset mining as incremental because in-
stead of computing the itemsets from scratch it starts from a set of previous
results. In this paper, we are interested, in particular, to study the situation of
query containment, that is, when query Q2 has a more restrictive set of con-
straints with respect to previous queries. In this case, it suffices to identify those
rules in the previous results which satisfy the new constraints and report them
all. We call this simple algorithm the ID incremental algorithm.

4 An Incremental Algorithm for Context Dependent
Constraints

In this section we propose a new incremental algorithm, aiming at deriving the
result of a new mining query Q2 starting from a previous result R1. This al-
gorithm is able to deal with context dependent constraints, which, at the best
of our knowledge, have not been tackled yet by any previous data mining algo-
rithm [2,19,3,20,21,6].

Here we give a brief account of the algorithm behavior, describing it in greater
details in the forthcoming sections. Initially, the algorithm reads rules from R1
and builds a data structure to keep track of them. We call this structure the BHF
(Body-Head Forest) (see Section 4.1). Then, the algorithm considers the items
which satisfy the mining constraints in each group, and uses this information to
update the BHF accordingly.

4.1 Description and Construction of the BHF

A BHF is a forest containing a distinguished tree (the body tree) and a number of
other trees (head trees). The body tree is intended to contain the itemsets which
are candidates for being in the body part of the rules. An important property of
body trees is that an itemset B is represented as a single path in the tree and
vice versa. The end of each path in the tree is associated to a head tree and to
a (body) support counter.

The head tree rooted at the ending node of the path corresponding to itemset
B is meant to keep track of those itemsets H that can possibly be used to form
a rule B → H . A head tree is similar to a body tree with the notably exception
that there is no link pointing to further heads. A path in a head tree corresponds
to an itemset H and is associated to a counter which stores the support of the
rule.

Figure 1 gives a schematic representation of a BHF.
In the following we will make use of the following notation: given a node

n belonging to a body tree or to a head tree, we denote with n.child(i) the
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Fig. 1. Example of BHF

body (respectively the head) tree rooted in the node n in correspondence of the
item i. For instance, in the root node of the BHF reported in Figure 1, there
are four items, and three non-empty children; root.child(a) denotes the body
node containing the items c, d, and z. In a similar way we denote the head tree
corresponding to a particular item i in a node n using the notation n.head(i).
We also assume that itemsets are sorted in an unspecified but fixed order. We
denote with I[k] the k-th element of the itemset I w.r.t. this ordering. Finally,
in many places we adopt the standard notation used for sets in order to deal
with BHF nodes. For instance, we write i ∈ n in order to specify that item i is
present in node n. Procedure insertRule describes how a rule is inserted in the

Procedure insertRule
Data : root : the BHF root node

B → H : the rule to be inserted
headTree ← insertBody(root, B, 1) ;
insertHead(headTree, H, 1);

BHF structure. The algorithm consists in two steps. In the first one the body
of the rule is inserted in the body tree (see Function insertBody). In the second
one the head is inserted and attached to the path found by the former function
call (see Procedure insertHead). We notice that the hierarchical structure of the
BHF describes a compressed version of a rule set. In fact, two rules B1 → H1
and B2 → H2 share a sub path in the body tree provided that B1 and B2 have a
common prefix. Analogously they share a sub path in a head tree provided that
B1 ≡ B2 and H1 and H2 have a common prefix.

4.2 Description of the Incremental Algorithm

Here, we assume that a BHF has been built out of the previous result set R1.
We explain how the counters in the structure are updated in order to reflect the
support counters implied by Q2.
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Function insertBody
Data : n : a BHF node; B : an itemset; k : an integer
if B[k] �∈ n then

n ← n ∪ B[k]
end
if k < size(B) then

insertBody(n.child(B[k]), B, k + 1)
else

return n.head(B[k])
end

Procedure insertHead
Data : n : a BHF node; H : an itemset; k : an integer
if H [k] �∈ n then

n ← n ∪ H [k]
end
if k < size(H) then

insertHead(n.child(H [k]), H, k + 1)
end

In the following we will denote with:

– T ′
b[g] ≡ {i | (g, i) ∈ T ′

b} and with T ′
h[g] ≡ {i | (g, i) ∈ T ′

h} the set of items in
group g that satisfy the body constraints and the head constraints.

– ΠGID(T ′
b) ≡ {g | (g, i) ∈ T ′

b} and with ΠGID(T ′
h) ≡ {g | (g, i) ∈ T ′

h} the set
of GIDs in T ′

b and in T ′
h.

– τ the support threshold chosen by the user
– B(r) the body of rule r and with H(r) the head of rule r

For the sake of readability, we reported in Algorithm 4 a simplified version
of the incremental algorithm which has the advantage of making its intended
behavior clear. In fact, the implemented version greatly improves on the reported
one by exploiting the hierarchical structure of BHF and the fact that there exists
a single path in BHF for each B and at most |B| paths for H . This allows the
function to require O(|B||H |) time in the worst case.

5 Results

The two incremental algorithms presented in this paper have been assessed on a
database instance, describing retail data, generated semi-automatically. We gen-
erated a first approximation of the fact table (purchases) using the synthetic
data generation program described in [22]. This data generation program has
been run using parameters |T | = 25, |I| = 10, N = 1000, |D| = 10, 000, i.e.,
the average transaction size is 25, the average size of potentially large itemsets
is 10, the number of distinct items is 1000 and the total number of transactions
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Algorithm 4: Context Dependent (CD) incremental algorithm

Data : BHF; pointers to T ′
b, T

′
h

Result : R2

for all GID g ∈ ΠGID(T ′
b) do

incrRuleSupp(BHF,T ′
b[g], T ′

h[g] )
end
for all rule r ∈ BHF do

if Ξ(r) then
R2 ← R2 ∪ r

end
end

Procedure incrRuleSupp

Data : BHF; IB: items in current transaction satisfying ΓB ; IA: items in
current transaction satisfying ΓA

Result : It updates the support counters in the BHF
for all r ∈ BHF do

if B(r)⊆ T ′
b[g] then

support(B(r))++;
if H(r)⊆ T ′

h[g] then
support(r)++;

end
end

end

is 10.000. Then, we updated this initial table adding some more attributes, con-
stituting the description (and the contextual information) on sales: some item
dependent features (such as category of product and price) and some context
dependent features (such as discount and quantity of sales). We generated these
attributes values randomly, using a uniform distribution defined on the respec-
tive domains.

We note here how a single fact table suffices for the objectives of our ex-
perimentation. In fact, the important parameters from the viewpoint of the
performance study of incremental algorithms are the selectivity of the mining
constraints (which determine the volume of data to be processed from the given
database instance) and the size of the previous result set. Figure 2(a) reports the
performances of the item dependent incremental algorithm (ID) as the selectiv-
ity of the mining constraints changes. We experimented different constraints on
the item dependent attributes, letting the constraints selectivity vary from 0%
to 100% of the total number of items. In Figure 2(a) we sampled twenty points.
Figure 2(b) tests the same algorithm, but it lets vary the number of rules in the
previous result set. Again we sampled twenty points (in the range 0 . . . 3220).
The two figures report the total amount of time needed by the algorithm to com-
plete, subdividing it in the preprocessing time (spent in querying the database
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Fig. 3. Empirical evaluation of the CD incremental algorithm

to retrieve and store in main memory the items that satisfy the constraints),
and the core mining time (needed by the algorithm to read the previous result
set and to filter out those rules that do not satisfy the constraints any more).

Figures 3(a) and 3(b) report the results on performances of the context de-
pendent (CD) algorithm. The figures report again the total execution time, spec-
ifying how much time was spent for preprocessing and for the core mining task.

A couple of points are worth noting. The execution times of both algorithms
increase almost linearly with the increase of the two parameters (constraints
selectivity and previous results), but as it was expected the item dependent in-
cremental algorithm runs much faster than its counterpart. In addition, evidence
from another set of experiments (not reported here for space reasons) shows that
the algorithms highly improve on our baseline miner algorithm that solves the
problem of constraint-based mining in its most general version. Due to lack of
space we do not describe this algorithm in details. In brief, the algorithm evalu-
ates the mining constraints directly on the fact table, and supports the following
features: fully support constraints (SQL-like predicates) on bodies and heads
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and correctly solves context dependent queries. This is an Apriori-like algorithm
that keeps track of the groups in which each item satisfies the mining constraints.
It adopts a work-flow similar to Partition [23] but uses BHF as data structure.
Moreover, in order to support CD constraints the generalized algorithm builds a
temporary source table which is usually much bigger than the original one. This
algorithm takes about 700 seconds in the average case to build the complete
result set which is more than an order magnitude higher than the time spent by
the CD incremental algorithm on the same task.

We also ran a version of FPGrowth [24] on the same dataset, but using
no constraints at all (since, at the best of our knowledge, CD constraints are
not supported by any algorithm proposed so far in the literature). It takes, on
average, about 21 seconds to complete. This is three times faster than the worst
performance of the CD incremental algorithm and three times slower than the ID
incremental one. We agree that this is only a very rough comparison and that
things can change substantially accordingly to the size of the previous result
set as well as with the support parameter given to FPGrowth. However, it is
interesting to notice how suggests that it may be possible to combine an efficient
algorithm like FPGrowth to build an initial result set, and an incremental one
(supporting CD constraints) in order to solve constraint-based queries.

This further motivates the interest in incremental algorithms, since it is then
possible to obtain an execution time that is still much smaller than the one re-
quired by the generalized constraint-based algorithm, and still allowing a general
class of constraints to be supported.

6 Conclusions

In this paper we proposed a novel “incremental” approach to constraint-based
mining which makes use of the information contained in previous results to
answer new queries. The beneficial factors of the approach are that it uses both:
the previous results and the mining constraints, in order to reduce the itemsets
search space.

We presented two incremental algorithms. The first one deals with item de-
pendent constraints, while the second one with context dependent ones. We
note how the latter kind of constraints has been identified only recently and
that there is very little support for them in current mining algorithms. However,
the difficulty to solve mining queries with context dependent constraints can be
partially overcome by combining the “traditional” algorithms proposed so far
in the literature, and the context dependent incremental algorithm proposed in
this paper.

In Section 5, we evaluated the incremental algorithms on a pretty large
dataset. The results show that the approach reduces drastically the overall execu-
tion time. We believe the improvement to be absolutely necessary in many practi-
cal data mining applications, in data warehouses and inductive database systems.

An interesting direction for future research is the integration of condensed
representations (which have been heavily studied in recent years) with the incre-
mental techniques presented here. In fact, it would be desirable to take advantage
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of both: the improved readability of condensed patterns, and the speeds improve-
ments of incremental algorithms. Moreover, to store condensed patterns means
that incremental algorithms need to deal with smaller result sets. Then, it may
be possible to obtain an even faster processing of incremental queries.

To this regard, the main problem to be faced is the interaction between novel
(more restrictive) constraints and condensed patterns. In fact, even though the
representative of a condensed set may not satisfy the new constraint, this not
necessarily hold for all the elements of the condensed set. This means that, when
such a situation occurs, it is not possible to simply remove the representative
from the previous result set. On the contrary, the old dataset must undergo care-
ful rewriting. While we expect that efficient solutions to the problem could be
found, the extension of our algorithms to deal with these issues is not straight-
forward and deserve additional work.
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