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An HLLC Riemann solver for relativistic flows – I. Hydrodynamics
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ABSTRACT
We present an extension of the HLLC approximate Riemann solver by Toro, Spruce and
Speares to the relativistic equations of fluid dynamics. The solver retains the simplicity of
the original two-wave formulation proposed by Harten, Lax and van Leer (HLL) but it restores
the missing contact wave in the solution of the Riemann problem. The resulting numerical
scheme is computationally efficient, robust and positively conservative. The performance of
the new solver is evaluated through numerical testing in one and two dimensions.
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1 I N T RO D U C T I O N

High-energy astrophysical phenomena involve, in many cases,
relativistic flows – typical examples are superluminal motion of rel-
ativistic jets in extragalactic radio sources, accretion flows around
massive compact objects, pulsar winds and γ ray bursts. The mod-
elling of such phenomena has prompted the search for efficient and
accurate numerical formulations of the special relativistic fluid equa-
tions (for an excellent review see Martı́ & Müller 2003). There is
now a strong consensus that the so-called ‘high-resolution shock-
capturing’ schemes provide the necessary tools in developing stable
and robust relativistic fluid dynamical codes. One of the fundamen-
tal ingredients of such schemes is the exact or approximate solution
to the Riemann problem.

The solution to the Riemann problem in relativistic hydrodynam-
ics (RHD) has been extensively studied in the literature, and an exact
solution can be found within a high degree of accuracy by iterative
techniques (see Martı́ & Müller 1994; Pons, Martı́ & Müller 2000;
Rezzolla, Zanotti & Pons 2003; and references therein). One of the
major differences with the classical counterpart is the velocity cou-
pling introduced by the Lorentz factor and the coupling of the latter
with the specific enthalpy. This adds considerably to the computa-
tional cost, making the use of an exact solver code prohibitive in a
multidimensional Godunov-type code.

From this perspective, approximate solvers based on alterna-
tive strategies have been devised: local linearization (Eulderink &
Mellema 1995; Falle & Komissarov 1996), two-shock approxima-
tion (Balsara 1994; Dai & Woodward 1997; Mignone, Plewa &
Bodo 2005a), flux-splitting methods (Donat et al. 1998), and so
forth (see Martı́ & Müller 2003 for a comprehensive review). Most
of these solvers, however, rely on rather expensive characteristic de-
compositions of the Jacobian matrix or involve iterative techniques
to solve highly non-linear equations. Although they usually attain
better resolution at discontinuities, some of these methods may pro-
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duce unphysical states with negative densities or pressures, as has
been shown by Einfeldt et al. (1991) for linearized Riemann solvers
in the context of classical hydrodynamics.

The HLL method devised by Harten, Lax & van Leer (1983) for
classical gas dynamics belongs to a different class of approximate
Riemann solvers and has gained increasing popularity among re-
searchers in the past decade. It has been implemented in the context
of the relativistic fluid equations by Schneider et al. (1993) and
Duncan & Hughes (1994). The HLL approach does not require a
full characteristic decomposition of the equations and is straightfor-
ward to implement in a Godunov-type code. Besides computational
efficiency, these solvers have the attractive feature of being posi-
tively conservative in the sense that they preserve initially positive
densities, energy and pressures.

The HLL formulation, however, lacks the ability to resolve an
isolated contact discontinuity and for this reason has a more diffu-
sive character than other more sophisticated algorithms. To com-
pensate for this, Toro, Spruce & Speares (1994) developed an
extension of the HLL solver for the Euler equations, introduc-
ing a two-state HLL-type solver called HLLC (where ‘C’ stands
for contact) that improves the treatment of the contact discontinu-
ity (see also Batten et al. 1997). Recently this approach has been
generalized to the magnetohydrodynamic equations (Gurski 2004;
Li 2005).

In the present work, we extend this approach to the relativis-
tic equation of fluid dynamics. The paper is structured as follows.
In Section 2 the relevant equations are given, in Section 3 we de-
scribe the new approximate Riemann solver and in Section 4 we as-
sess the strength of the new method with one- and two-dimensional
tests.

2 T H E R H D E QUAT I O N S

The motion of an ideal relativistic fluid is governed by conservation
of mass, momentum and energy. The pertaining equations are cast
as a hyperbolic system of conservation laws (Landau & Lifshitz
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1959) which, in two dimensions, reads

∂U
∂t

+ ∂Fx (U )

∂x
+ ∂Fy(U )

∂y
= 0, (1)

where U = (D, mx, my, E) is the unknown vector of conservative
variables, whereas Fx and Fy are, respectively, the fluxes along the
x and y directions

Fx (U ) =




Dvx

mxvx + p
myvx

mx


 , Fy(U ) =




Dvy

mxvy

myvy + p
my


 . (2)

Generalization to three dimensions is straightforward.
In equations (2), p is the thermal pressure, whereas D, m ≡

(mx, my) and E are, respectively, the mass, momentum and energy
densities relative to the laboratory frame, where the fluid has veloc-
ity v≡ (vx, vy). Units are conveniently normalized so that the speed
of light is c = 1.

The relation between conserved variables U and physical quan-
tities V = (ρ, vx, vy, p) is

D = γρ, m = Dhγv, E = Dhγ − p, (3)

where ρ is the proper rest-mass density, γ = (1 − v · v)−1/2 is
the Lorentz factor and h is the specific enthalpy. Proper closure is
provided by specifying an equation of state in the form h = h(p, ρ).

For an ideal gas, the enthalpy has the form

ρh = ρ + p�/(� − 1)

and the sound speed is defined by

cs =
√

� p

ρh
. (4)

with � being the (constant) specific heat ratio. By letting p/ρ → ∞,
we see that the square of the sound speed has the limiting value
c2

s →� − 1. Since it can be shown (Taub 1948; Anile 1989; Mignone
et al. 2005a) that the specific heat ratio� cannot exceed 2, one always
has c2

s < 1. This is an important result for the positivity of the HLL
and HLLC schemes and will be used in a later section.

Equations (3) give U in terms of the primitive state vector V. The
inverse relation involves the solution of a non-linear equation for
the pressure p:

E + p = Dγ + �

� − 1
pγ 2, (5)

where γ = [1 − |m|2/(E + p)2]−1/2. Equation (5) can be solved by
any standard root-finding algorithm.

2.1 The Riemann problem in RHD

Consider a conservative discretization of (1) along the x-direction:

U
n+1
i − U

n
i

�tn
=

f i+ 1
2

− f i− 1
2

�xi
. (6)

The numerical flux functions f i+ 1
2

follow from the solution of
Riemann problems with initial data

U (x, 0) =
{

U L,i+ 1
2

if x < xi+ 1
2
,

U R,i+ 1
2

if x > xi+ 1
2
,

(7)

where U L,i+ 1
2

and U R,i+ 1
2

are the left and right edge values at zone
interfaces.

The solution of the Riemann problem for the special relativistic
fluid equations has been investigated by Martı́ & Müller (1994), Pons
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Figure 1. Graphical representation of the Riemann fan in the x–t plane. The
two initial states U L and U R decay into two non-linear waves (with speeds
λL and λR) and a linear contact wave with velocity λ∗. The resulting wave
pattern divides the x–t plane into four regions each defining a constant state:
U L, U∗

L, U∗
R and U R.

et al. (2000) and Rezzolla et al. (2003). It consists of a self-similar
three-wave pattern generated by the decay of the initial disconti-
nuity (7). The resulting Riemann fan (Fig. 1) is bounded by two
non-linear waves (representing either shocks or rarefactions) sepa-
rated by a contact discontinuity moving at the fluid velocity. Across
the contact discontinuity, pressure and normal velocity are contin-
uous whereas density and tangential velocities experience jumps.
The same holds also in the non-relativistic limit. Contrary to the
Newtonian counterpart, however, all variables are discontinuous
across a shock wave or change smoothly through a rarefaction fan
(Pons et al. 2000). This is a consequence of the velocity coupling
introduced by the Lorentz factor γ and by the coupling of the latter
with the specific enthalpy h.

The resulting wave pattern can be solved to a high degree of pre-
cision by iterative techniques and has been implemented for the first
time in the one-dimensional Godunov-type code by Martı́ & Müller
(1996). Nevertheless, when tangential velocities are included, the
computational effort increases considerably, and the use of an ex-
act solver in a multidimensional Godunov-type code can become
prohibitive.

Here we consider a different approach, based on the original
prescription given by Harten et al. (1983) (HLL) for the classi-
cal Euler equations and subsequently extended by Toro et al. (1994)
(HLLC). Neither the HLL nor the HLLC formulation require a field-
by-field decomposition of the relativistic equations, a feature that
makes them particularly attractive, especially in multidimensional
applications.

3 T H E H L L F R A M E WO R K

Harten, Lax and van Leer (Harten et al. 1983) proposed an approxi-
mate solution to the Riemann problem where the two states bounded
by the two acoustic waves are averaged into a single constant
state. In other words, the solution to the Riemann problem on the
x/t = 0 axis consists of the three possible constant states:

U (0, t) =




U L if λL � 0,

U hll if λL � 0 � λR,

U R if λR � 0,

(8)

where, for simplicity, we have dropped the half-integer notation
i + 1

2 . Harten et al. (1983) noted that the single state U hll could
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be constructed from an a priori estimate of the fastest and slowest
signal velocities λL and λR:

U hll = λRU R − λLU L + FL − FR

λR − λL
, (9)

where FL = Fx (U L) and FR = Fx (U R). Notice that equation (9)
represents the integral average of the solution of the Riemann prob-
lem over the wave fan (Toro 1997).

The corresponding interface numerical flux is defined as

f =




FL if λL � 0,

Fhll if λL � 0 � λR,

FR if λR � 0,

(10)

where

Fhll = λR FL − λL FR + λRλL(U R − U L)

λR − λL
. (11)

Thus, given a wave speed estimate for the fastest and slowest speeds
λR and λL (see Section 3.1.1), an approximate solution to the
Riemann problem can be constructed and the inter-cell numerical
fluxes for the conservative update (6) are computed using (10).

This approach was applied for the first time to the one-
dimensional relativistic equations by Schneider et al. (1993) and
later by Duncan & Hughes (1994) for the multidimensional case.

Although the HLL prescription is computationally inexpensive
and straightforward to implement, a major drawback is its inability
to resolve contact or tangential waves. On the contrary, the HLLC
scheme, originally introduced by Toro et al. (1994) in the context
of the Euler equations of classical gas dynamics, does not suffer
from this loss. In the next section we generalize this approach to the
equations of relativistic hydrodynamics.

3.1 HLLC solver

The HLLC scheme restores the full wave structure inside the
Riemann fan by replacing the single averaged state defined by (9)
with two approximate states, U ∗

L and U ∗
R. These two states are sep-

arated by a middle contact wave, which is assumed to have constant
speed λ∗, so that the full solution to the Riemann problem now
reads

U (0, t) =




U L if λL � 0,

U ∗
L if λL � 0 � λ∗,

U ∗
R if λ∗ � 0 � λR,

U R if λR � 0,

(12)

and the corresponding inter-cell numerical fluxes are

f =




FL if λL � 0,

F∗
L if λL � 0 � λ∗,

F∗
R if λ∗ � 0 � λR,

FR if λR � 0.

(13)

The intermediate state fluxes F∗
L and F∗

R may be expressed in
terms of U ∗

L and U ∗
R from the Rankine–Hugoniot jump conditions:

λ(U ∗ − U ) = F∗ − F, (14)

where here and throughout the following, quantities without a suffix
‘L’ or ‘R’ refer indifferently to the left (L) or right (R) states. Notice
that, in general, F = Fx (U ) but F∗ �= Fx (U ∗).

We remind the reader that the HLL and HLLC solvers differ
in the representation of the intermediate states. In the case of su-
personic flows (λL > 0 or λR < 0), in fact, the two solvers be-
come equivalent. The same result also holds for an exact Riemann
solver.

If λL and λR are given (see Section 3.1.1), equation (14) repre-
sents a system of 2n equations (where n is the number of components
of U) for the 4n + 1 unknowns U ∗

L, U ∗
R, F∗

L, F∗
R and λ∗. Three ad-

ditional constraints come from the requirements that both pressure
and normal velocity be continuous across the contact wave (i.e.
v∗

x,R = v∗
x,L, p∗

R = p∗
L) and that λ∗ = v∗

x,L = v∗
x,R. This, how-

ever, yields a total of only 2n + 3 equations, still not sufficient
to solve the system. In order to reduce the number of unknowns and
have a well-posed problem, further assumptions have to be made on
the form of the fluxes F∗. Here we assume that the two-dimensional
fluxes can be written as

F∗ =




D∗v∗
x

m∗
xv

∗
x + p∗

m∗
yv

∗
x

m∗
x


 . (15)

In such a way, both U ∗ and F∗ are expressed in terms of the
five unknowns D∗, v∗

x , m∗
y , E∗ and p∗. The normal components of

momentum in the star region, m∗
x,L and m∗

x,R, are not independent
variables since, for consistency, we require that m∗

x = (E∗ + p∗)v∗
x .

In the classical case, this assumption becomes equivalent to m∗
x =

ρ∗λ∗. This yields a total of 11 equations in 11 unknowns.
Writing equation (14) explicitly for the left or the right state yields

D∗(λ − λ∗) = D(λ − vx ),

m∗
x (λ − λ∗) = mx (λ − vx ) + p∗ − p,

m∗
y(λ − λ∗) = my(λ − vx ),

E∗(λ − λ∗) = E(λ − vx ) + p∗λ∗ − pvx .

(16)

If one combines the last of (16) together with the second one, the
following expression giving λ∗ in terms of p∗ may be obtained:

(A − λp∗)v∗
x = B + p∗, (17)

where A = λE − mx and B = mx(λ − vx) − p.
By imposing p∗

x,L = p∗
x,R across the contact discontinuity we find

the following quadratic equation for λ∗:

Fhll
E (λ∗)2 − (

Ehll + Fhll
mx

)
λ∗ + mhll

x = 0. (18)

In equation (18), Fhll
E and Fhll

mx
are the energy and momentum

components of the HLL flux given by equation (11), whereas Ehll

and mhll
x are the energy and normal momentum components of the

HLL state vector (equation 9). Of the two roots of equation (18),
only the one with the minus sign is physically acceptable, since it
lies in the range (−1, 1) and, according to the wave speed estimate
presented in Section 3.1.1, can be interpreted as an average velocity
between λL and λR. The mathematical proof of this statement is
given in Appendix A. Besides, the same root has the correct classical
limit, that is λ∗ → mhll

x /ρhll as v/c → 0 and h → 1. This wave speed
is the same as that proposed by Toro (1997) and further discussed
in Batten et al. (1997).

Once λ∗ is known, p∗ is computed from (17) and the components
of U ∗ are readily obtained from (16).

Finally we notice that the method is consistent, in that the integral
average over the Riemann fan automatically satisfies the consistency
condition by construction (Toro 1997):(
λ∗ − λL

)
U ∗

L + (
λR − λ∗)U ∗

R

λR − λL
= U hll, (19)
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or, alternatively,

F∗
LλR

(
λ∗ − λL

) + F∗
RλL

(
λR − λ∗)

λR − λL
= λ∗ Fhll. (20)

Incidentally, we notice that equation (18) could have been obtained
by algebraic manipulations of equations (19) and (20).

3.1.1 Wave speed estimate

The wave speeds needed in our formulation are estimates for the
lower and upper bounds of the signal velocities in the solution to
the Riemann problem (Toro 1997). Here we consider the relativistic
generalization of the estimates given by Davis (1988) for the Euler
equation of gas dynamics. The same choice was initially adopted
by Schneider et al. (1993) and Duncan & Hughes (1994) in their
relativistic HLL solver and is commonly used by other authors (see
e.g. Del Zanna & Bucciantini 2002). Specifically we set

λL = min(λ−(VR), λ−(VL)),

λR = max(λ+(VR), λ+(VL)),
(21)

where λ+ and λ− are the maximum and minimum eigenvalues of
the Jacobian matrix ∂ F/∂U . They are the roots of the quadratic
equation

(λ − vx )2 = σs(1 − λ2), (22)

with σs = c2
s /[γ 2(1 − c2

s )], and hence

λ±(V) =
vx ±

√
σs

(
1 − v2

x + σs

)
1 + σs

. (23)

It should be mentioned that the wave speed estimate (21) is not the
only possible one, and different choices (such as the Roe average)
may be considered.

3.1.2 Positivity of the HLLC scheme

Adopting the same notations as in Batten et al. (1997), we denote
with G the set of physically admissible conservative states:

G =







D
mx

my

E


 ,

D > 0
E >

√
m2

x + m2
y + D2


 , (24)

where the second inequality simultaneously guarantees pressure
positivity and that the total velocity never exceeds the speed of
light.

We remind the reader that the pressure p(U ∗) computed from
the conservative state U ∗ using (5) should not be confused with
p∗ appearing in the flux definition (15). The two pressures are, in
fact, different and the positivity argument should apply to p(U ∗)
rather than to p∗, which can take negative values under certain cir-
cumstances. Similar considerations hold for the velocity λ∗ of the
contact discontinuity, for which, in general, we have λ∗ �= vx(U ∗).
Thus p∗ and λ∗ may be more conveniently considered as auxiliary
variables.

This is one of the fundamental differences between our relativis-
tic solver and the classical HLLC scheme, for which λ∗ = mhll

x /ρhll

and thus only p∗ plays the role of an auxiliary parameter. This be-
haviour is a direct consequence of the relativistic coupling between
thermodynamic and kinetic terms, a feature absent in the Newtonian
formulation. The positivity of the HLLC scheme is preserved if each
of the two intermediate states U ∗

L and U ∗
R are contained in G.

For the density, the proof is trivial and follows from the inequal-
ities λL � λ∗ � λR and λL � vx(L , R) � λR – see Appendix A.

Unfortunately, the analytical proof of the second statement
presents some algebraic difficulties, since the second of (24) reduces
to an inequality for a quartic equation in λ∗. However, extensive nu-
merical testing, part of which is presented in Section 4, has shown
that the second of (24) is always satisfied for all pairs of states U L

and U R whose wave speeds are computed according to (21) and for
which an exact analytical solution to the Riemann problem exists
(i.e. no vacuum is created).

4 A L G O R I T H M VA L I DAT I O N

We now provide some numerical examples to test our new HLLC
solver. For the test problems considered in this section we closely
follow Lucas-Serrano et al. (2004).

4.1 Implementation details

The numerical integration of the relativistic equation (1) proceeds
via the conservative update (6). For the first-order HLLC scheme,
we compute the inter-cell numerical fluxes f i+ 1

2
using (10) with

left and right states given, respectively, by U i and U i+1. For the
second-order scheme, the input to the Riemann problem are the
states

V
n+ 1

2

i+ 1
2 ,L

= V
n+ 1

2
i + δVn

i

2
,

V
n+ 1

2

i+ 1
2 ,R

= V
n+ 1

2
i+1 − δVn

i+1

2
,

(25)

where V
n+ 1

2
i follows from a simple Hancock predictor step,

U
n+ 1

2
i = U n

i − �tn

2�xi

[
F
(

Vn
i+ 1

2 ,L

) − F
(

Vn
i− 1

2 ,R

)]
, (26)

with Vn
i+ 1

2 ,L
and Vn

i− 1
2 ,R

computed from (25) by replacing Vn+ 1
2

with Vn .
The δV appearing in equation (25) are computed at the beginning

of the time-step using the fourth-order limited slopes (Colella 1985;
Saltzman 1994):

δV i = si min

(∣∣∣∣4

3
�0V i − δ̄V i+1 + δ̄V i−1

6

∣∣∣∣ , �l V i

)
, (27)

where

�l V i = α min(|�V i |, |�V i−1|), (28)

and δ̄V i are the second-order slopes

δ̄V i = si min(�l V i , |�0V i |), (29)

with

�V i = V i+1 − V i , �0V i = V i+1 − V i−1

2
, (30)

si = sign(�V i ) + sign(�V i−1)

2
. (31)

The parameter α ∈ [1, 2] adjusts the limiter compression, with
α = 2 (α = 1) yielding a more (less) compressive limiter. Notice
that, although the use of fourth-order slopes attains sharper repre-
sentations of discontinuities, the scheme retains global second-order
spatial accuracy.

We do not make use of any artificial steepening algorithm to
enhance resolution across a contact wave (Martı́ & Müller 1996;
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Lucas-Serrano et al. 2004; Mignone et al. 2005a) in order to high-
light the intrinsic capabilities of our new HLLC solver. In the one-
dimensional tests, the computational domain is the interval [0, 1]
and the compression parameter is α = 2. In two dimensions we set
α = 2, 1.25 and 1 for density, velocities and pressure, respectively.
Additional shock flattening, computed as in Martı́ & Müller (1996),
is used in Sections 4.2 and 4.6 to prevent spurious numerical oscil-
lations. Outflow boundary conditions are set in problems 1–4 in the
following subsections.

Multidimensional integration is achieved via Strang directional
splitting (Strang 1968), that is, by successively applying one-
dimensional operators in reverse order from one time-step to the
next one, i.e. U n+2 = LxLyU n+1 and U n+1 = LyLxU n . Here Lx

is the operator corresponding to the conservative update (6) (and
similarly for Ly). The same time increment �t should be used for
two consecutive time-steps. Finally, the choice of �t is based on the
Courant-Friederichs-Lewy (CFL) condition (Courant, Friedrichs &
Lewy 1928).

4.2 Problem 1

The first test consists of a Riemann problem with initial data

(ρ, vx , p) =
{

(1, 0.9, 1) for x < 0.5,

(1, 0, 10) for x > 0.5.
(32)

Integration is carried with CFL = 0.8 until t = 0.4 and an ideal
equation of state with � = 4/3 is used. The breakup of the discon-
tinuity results in the formation of two shock waves separated by a
contact discontinuity.

In Fig. 2 we plot the analytical solution for the rest-mass density
together with the profiles obtained with the first-order HLLC and
HLL schemes on 100 uniform computational zones. The two inte-
grations behave similarly near the shock waves, but differ in their
ability to resolve the contact discontinuity. As expected, the HLLC
scheme yields a sharper representation of the latter, whereas the
HLL solver retains a more diffusive character.

The L1 norm errors of density are shown in the top-left panel of
Fig. 8 for different resolutions. For the sake of comparison, com-

Figure 2. Comparison between the HLL (dotted line) and HLLC (dashed
line) Riemann solvers for problem 1 at t = 0.4. Only the density profiles are
shown. Computations were performed with the first-order scheme on 100
computational zones with CFL = 0.8. The solid line gives the analytical
solution. The major difference between the two approaches is the resolution
of the contact wave.

Figure 3. Numerical solutions obtained with the second-order HLLC
scheme applied to problem 1. The solid line represents the analytical so-
lution, while computed profiles of density (crosses), pressure (plus signs)
and velocity (filled circles) are shown on 400 computational zones at t =
0.4. A CFL number of 0.8 was used.

putations have also been performed using the more sophisticated
exact Riemann solver described in the one-dimensional code by
Martı́ & Müller (1996). The errors obtained with the present HLLC
scheme and the exact Riemann solver are comparable at low resolu-
tion (∼15.3 per cent and ∼13.6 per cent respectively on 100 points)
and become nearly identical as the number of points increases. Con-
versely, the errors computed with the relativistic HLL scheme are
bigger (∼22.2 per cent on 100 points) and show that almost twice
the resolution is needed to achieve the same accuracy obtained
with the HLLC or the exact solver. Fig. 3 shows the results com-
puted with the second-order HLLC scheme on 400 zones, at the
same time. The exact profiles for density, velocity and pressure are
plotted as solid lines. Additional slope flattening (Martı́ & Müller
1996) has been used to reduce the spurious numerical oscillations
observed behind the shock front. All discontinuities are adequately
captured and resolved on few computational cells, ∼3 for the shocks
and ∼4–5 for the contact discontinuity (contrary to ∼7 when the
HLL solver is employed).

The error in L1 norm is ∼2.3 per cent for 400 grid zones and it
has been computed at different resolutions using the HLL, HLLC
and exact Riemann solver (see Fig. 9). Not surprisingly, the second-
order interpolation considerably reduces the errors and higher con-
vergence rates are expected for all schemes. Nevertheless, the three
solvers mostly differ in the resolution at the contact discontinuity
and, for n � 800 grid points, the HLLC and exact Riemann are
practically indistinguishable, while at the maximum resolution em-
ployed (3200 zones), the error computed with the HLL scheme is
still ∼20 per cent bigger.

4.3 Problem 2

In the second test, we prescribe the initial condition

(ρ, vx , p) =
{

(1, −0.6, 10) for x < 0.5,

(10, 0.5, 20) for x > 0.5,
(33)

with an ideal equation of state with � = 5/3. Integration stops at
t = 0.4 and CFL = 0.8 has been used in the integration. The ini-
tial discontinuity evolves into left-going and right-going rarefaction
waves with a contact discontinuity in the middle.
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Figure 4. Computed density profiles for the first-order HLL (dotted line)
and HLLC (dashed line) schemes for problem 2 at t = 0.4. We used 100
grid points and CFL number of 0.8. The analytical solution is plotted as a
solid line. As expected, the HLLC solver behaves quantitatively better than
the HLL scheme across the contact wave.

Results for the first-order HLL and HLLC schemes on a 100-
point uniform grid are shown in Fig. 4. Again, notice the sharper
resolution of the HLLC scheme in the proximity of the contact
wave. The smooth rarefaction waves are equally resolved by both
schemes.

The behaviour of the solution under grid resolution effects is
described in the top-right panel of Fig. 8. Since the only discontinuity
in the problem is the contact wave, the L1 norm reflects mostly the
different resolution across the discontinuity. The HLLC and the
exact solver perform nearly identically, while the HLL exhibits a
slightly slower convergence rate. At the maximum resolution, the
error in the HLL scheme is ∼4.3 per cent compared to the ∼3.0 and
3.1 per cent errors obtained from the other two Riemann solvers.

These differences are again reduced in the second-order HLLC
scheme (Fig. 5), for which the convergence rates are similar, as
shown in the top-right panel of Fig. 9.

Figure 5. Second-order HLLC scheme applied to problem 2 at t = 0.4 on
400 computational zones with CFL = 0.8. As in Fig. 3, profiles for density,
pressure and velocity are plotted using crosses, plus signs and filled circles.
The contact wave is the only discontinuity in the solution and is clearly
visible at x ≈ 0.4.

Figure 6. Results of the second-order HLLC scheme applied to shock tube
problem 3 at t = 0.4 on 400 computational zones. Integration has been
carried with CFL = 0.8. The solution comprises a left-going rarefaction
wave, a right-going contact and shock wave moving close to each other.

4.4 Problem 3

The initial condition for this test is

(ρ, vx , p) =
{

(10, 0, 40/3) for x < 0.5,

(1, 0, 0) for x > 0.5,
(34)

with � = 5/3. For numerical reasons, the pressure in the left state
has been set equal to a small value, p = (2/3) × 10−6. Integration
is carried with CFL = 0.8 on 400 grid points; the final integration
time is t = 0.4. The initial configuration results in a mildly rela-
tivistic blast wave, with a maximum Lorentz factor γmax ∼ 1.4. The
Riemann fan consists of a rarefaction wave moving to the left, a
shock wave adjacent to a contact discontinuity, both moving to the
right (see Fig. 6).

Our HLLC scheme is able to capture discontinuities properly; in
particular, the shock is resolved within 2–3 zones and the contact
discontinuity smears out over 4–5 zones. We remind the reader again
that the interpolation algorithm does not make use of additional ar-
tificial compression to enhance resolution across the contact wave,
as in Martı́ & Müller (1996). Moreover, we repeated the test also
with the exact Riemann solver and did not find any noticeable dif-
ference. In addition, and contrary to the previous two test problems,
we did not find strong differences between our HLLC method and
the HLL scheme. Resolution effects are given in the bottom left
panels of Figs 8 and 9 for the first-order and second-order schemes,
respectively. As one can see, the solutions computed with the HLL,
HLLC and exact solvers behave nearly in the same way, with the L1

norm errors being different by less than 1 per cent at low resolution
and becoming identical for n � 800 grid points. We believe that this
might be due to the proximity of the contact and shock waves. The
quality of our results is, however, similar and comparable to those
obtained in previous studies.

4.5 Problem 4

In the fourth shock tube, we prescribe the following initial discon-
tinuity

(ρ, vx , p) =
{

(1, 0, 103) for x < 0.5,

(1, 0, 10−2) for x > 0.5.
(35)
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Figure 7. Computed profiles of density, pressure and velocity for the
second-order HLLC scheme applied to blast wave problem (problem 4).
Integration has been carried out with CFL = 0.8 on 400 uniform zones until
t = 0.4. The configuration is similar to that of problem 3, but the shock and
the contact waves are now much closer to each other.

Again we adopt an ideal equation of state with � = 5/3. The re-
sulting pattern is similar to that of problem 3, but the specific en-
thalpy in the left state is much greater than unity, thus resulting in
a more thermodynamically relativistic configuration. The solution
computed with the second-order scheme at t = 0.4 is shown in Fig. 7
on 400 computational zones and CFL = 0.8.

The high pressure jump produces a strong shock wave and a
contact discontinuity very close to each other, moving to the right
at almost the same speeds. The strong compression in the shell is
due to the relativistic length contraction effect caused by a Lorentz
factor, γmax ∼ 3.7. The smaller thickness of the shell between the
shock and the contact wave makes this test numerically challenging
and particularly demanding in terms of resolution.

Our relativistic HLLC scheme is able to reproduce the solution
within a satisfactory agreement, even without using a contact steep-
ening algorithm. The absolute global error in density is 6.5 per cent
and the density peak in the thin shell achieves ∼81.6 per cent of
the exact value. Our results are therefore similar to previous ones
proposed in the literature.

It should also be pointed out that, similarly to problem 3, we
did not find any improvement in the solution by switching to
the exact Riemann solver or using the relativistic HLL scheme.
This is confirmed by the resolution study carried out for the first-
and second-order schemes (bottom right panels in Figs 8 and 9).
Again, we suggest that the ability to capture the discontinuities
relies on the interpolation properties of the algorithm and has a
weaker dependence on the Riemann solver for this particular class of
problems.

4.6 Relativistic planar shock reflection

The initial configuration for this test problem consists of a cold
(p = 0), uniform (ρ = 1) flow impinging on a wall located at
x = 0. The flow has constant inflow velocity v in and the reflection
results in the formation of a strong shock wave. For t > 0 the shock
propagates upstream and the solution has an analytic form given by

Figure 8. L1 norm errors of the density under different grid resolutions for
the first-order schemes using the HLL (filled circles), HLLC (crosses) and
exact Riemann solvers (triangles). Results are shown for problem 1 (P1, top
left), problem 2 (P2, top right), problem 3 (P3, bottom left) and problem
4 (P4, bottom right). Computations have been performed on 50, 100, 200,
400, 800, 1600 and 3200 grid zones with the same CFL number (0.8) for
all runs. Note that both the HLLC and exact solvers perform better than the
HLL scheme in problems 1 and 2, while all schemes yield nearly identical
results in problems 3 and 4.

Figure 9. Same as Fig. 8, but for the second-order scheme. Computations
were obtained using the same CFL number (0.8) for all cases.

(Martı́ & Müller 1996)

ρ(r , t) =
{

1 for r > vst,

σ for r < vst,
(36)
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Figure 10. Relativistic planar shock reflection test with CFL = 0.4 and
100 grid points. Results are shown at t = 1.5 for the second-order HLLC
scheme. The cold supersonic flow enters at x = 1 and a reflective boundary
condition is imposed on the left, at x = 0. The reflected shock is located at
x = 0.5.

where

σ = � + 1 + �(γin − 1)

� − 1
, vs = (� − 1)

γin|vin|
γin + 1

, (37)

are the compression ratio and the shock velocity, respectively. Be-
hind the shock wave (r < v st), the gas is at rest (i.e. v = 0) and the
pressure has the constant value ρ(r , t)(γ in − 1)(� − 1). Conversely,
in front of the shock all of the energy is kinetic and thus p = 0 and
v = v in.

For numerical reasons, pressure has been initialized to a small
finite value, p = ε(� − 1), with ε = 10−10 and � = 4/3. The
computational domain is covered with 100 computational zones
and the initial inflow velocity is v in = −0.999 99 corresponding to
a Lorentz factor γ in ∼ 224. Integration is carried with CFL = 0.4.

Fig. 10 shows the solution at t = 1.5, after the shock has propa-
gated �x s ≈ 0.5 from the wall. The relative global errors, defined
as ε(L1)/

∑
i ρex(xi )�xi , for density, velocity and pressure are, re-

spectively, 1.8, 1.4 and 1.4 per cent. This result is in excellent quan-
titative agreement with the numerical solutions obtained by other
authors (Marquina et al. 1992; Martı́ et al. 1997; Aloy, Ibáñez &
Martı́ 1999; Del Zanna & Bucciantini 2002). In this test, similarly
to problem 1, shock flattening was employed to prevent numerical
oscillations.

From the same figure, we notice that our solver suffers from the
wall heating phenomenon (consisting of a density undershoot at the
wall), a common pathology in modern Godunov-type schemes. The
degree of this pathology is higher than the HLL scheme but less
than the exact Riemann solver. We also point out that the problem
may be partially mitigated by a proper fine tuning of the parameters
involved in the reconstruction and steepening algorithms. However,
we did not follow that approach in the present work.

4.7 Two-dimensional Riemann problem

Two-dimensional Riemann problems involve the interactions of four
elementary waves (either shocks, rarefactions or contact disconti-
nuities) initially separating four constant states. They have been
formulated by Schulz-Rinne, Collins & Glaz (1993) and Lax & Liu
(1998) in the context of classical hydrodynamics. Here we con-
sider a relativistic extension, originally proposed by Del Zanna &

Bucciantini (2002), where the initial configuration involves two
shocks and two tangential discontinuities.

The domain is the square [−1, 1] × [−1, 1] covered with 4002

computational zones. The four quadrants NE (x , y > 0), NW (x <

0 < y), SW (x, y < 0) SE (y < 0 < x) divide the square into four
constant-state regions:

(ρ, vx , vy, p) =




(0.1, 0, 0, 0.01) for x, y > 0,

(0.1, 0.99, 0, 1) for x < 0 < y,

(0.5, 0, 0, 1) for x, y < 0,

(0.1, 0, 0.99, 1) for y < 0 < x .

(38)

We use an ideal equation of state with � = 5/3. The integration is
carried out with CFL = 0.4 till t = 0.8.

Notice that the initial condition (38) does not exactly prescribe
two simple shock waves at the NW–NE and SE–NE interface. The
correct version of this problem has been considered by Mignone
et al. (2005a). For the sake of comparison, however, we chose to
adopt the same initial condition as in Del Zanna & Bucciantini
(2002).

The top and bottom panels in Fig. 11 show, respectively, the
solutions computed with the HLLC and HLL solvers. The breakup of
the initial discontinuity results in two equal-strength curved shock
fronts propagating from regions NW and SE into the upper right
portion of the domain (NE) – see the top panel of Fig. 11. Region SW
is bounded by two tangential discontinuities and a jet-like structure
emerges along the main diagonal.

The initial steady tangential discontinuities, located at the W and
S interfaces, remain automatically sharp in the HLLC formulation,
since they are exactly captured by the approximate Riemann solver.
The same result has also been shown by Mignone et al. (2005a), who
used a two-shock iterative non-linear solver. We emphasize that this
property pertains to the Riemann solver itself and does not depend
on the interpolation algorithm. Indeed the same result holds when
the first-order scheme is employed. This feature is absent from the
HLL formulation, where tangential discontinuities spread along the
Cartesian axis due to extra numerical diffusion. This behaviour is
manifestly evident in the grid-aligned spurious waves visible in the
bottom panel of Fig. 11 (see also Del Zanna & Bucciantini 2002;
Lucas-Serrano et al. 2004).

4.8 Axisymmetric relativistic jet

Finally, as an example of an astrophysical application, we consider
the propagation of a light, axisymmetric relativistic jet in 2D cylin-
drical geometry. For the sake of comparison, the parameters of the
simulation are the same as those used by Del Zanna & Bucciantini
(2002) and by Lucas-Serrano et al. (2004). The initial condition is
prescribed as

(ρ, vr , vz, p) =
{

(0.1, 0, 0.99, 10−2) for r , z < 1,

(10, 0, 0, 10−2) otherwise.
(39)

The jet is pressure-matched and its internal relativistic Mach number
is 17.1. We use an ideal equation of state with � = 5/3 both for the
jet and for the ambient medium. The computational domain covers
the region 0 � r � 12 and 0 � z � 35, with 240 × 700 grid
points, so that we have 20 cells per jet radius. At the symmetry axis,
r = 0, we impose reflecting boundary conditions; outflow boundary
conditions are set everywhere else, except at the inlet region, where
we keep the beam constant. The CFL number is 0.5 and the jet
evolution is followed until t = 80.
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Figure 11. Density logarithms for the two-dimensional Riemann problem
on 4002 zones at t = 0.8; the top (bottom) panel shows the results obtained
with the second-order HLLC (HLL) scheme. Thirty equally spaced con-
tours are shown. Integration has been performed with CFL = 0.4. Curved
transmitted shocks are visible in the upper right portion of the domain. The
drop-shaped region in the lower left portion is bounded by two tangential
discontinuities. The HLL (bottom panel) shows additional numerical dif-
fusion, which degenerates into spurious waves propagating along the main
axis.

For the sake of comparison, we have also carried the simulation
using the relativistic HLL solver. Fig. 12 shows two snapshots of
the rest-mass density at times t = 40 and t = 80. The upper-half
of each panel refers to the HLLC integration, whereas the lower
portion displays the result obtained with the HLL scheme. We see
that all the structural features characteristic of jet propagation can be
clearly identified, with good resolution of shock waves and contact
discontinuities. The HLLC integration shows a significantly greater
amount of small-scale structure, which is not visible in the HLL
results. This is due to the larger numerical diffusion introduced by
the latter in subsonic regions, which prevents sharp resolution of
shear and tangential waves.

The average advance speed of the jet head is ∼0.39 [to be com-
pared with a one-dimensional theoretical estimate of 0.44 (Martı́
et al. 1997)]. Moreover, we can observe the absence of the carbun-
cle problem, which usually appears as an extended nose in front of
the jet, on the axis (Quirk 1994).

Figure 12. Grey-scale images of the rest-mass density logarithm for the
relativistic jet simulation at t = 40 (top panel) and t = 80 (bottom panel).
In each panel, the HLLC (HLL) solver has been used for the upper (lower)
portion of the image. The resolution is 20 points per jet radius, corresponding
to grid size of 240 × 700 computational zones. Integration has been carried
out with CFL = 0.5.

5 E F F I C I E N C Y C O M PA R I S O N

Previous numerical tests have shown that the quality of solution
achieved with the HLLC scheme can be competitive with more
complex exact or iterative non-linear Riemann solvers – see for ex-
ample Martı́ & Müller (1996) and Mignone et al. (2005a). Another
aspect that plays in favour of the HLLC formalism is the compu-
tational efficiency, particularly crucial in long-term simulations in
two and three dimensions.

Table 1 gives the normalized CPU time required by the HLL,
HLLC and approximate two-shock non-linear Riemann solvers (for

Table 1. Normalized CPU time per integration step for the
first four one-dimensional shock tubes and the 2D Riemann
problem (R2D) considered in Section 4.7. The two right-
most columns give the average computing time for the HLLC
and two-shock non-linear Riemann solvers normalized to the
HLL time (third column). All runs were produced using the
first-order scheme with CFL = 0.8.

Test No. of zones HLL HLLC Riemann

1 4000 1 1.05 1.37
2 4000 1 1.07 1.34
3 4000 1 1.06 1.30
4 4000 1 1.04 1.44

R2D 4002 1 1.03 1.30
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the latter see Mignone et al. 2005a). All three solvers are available
in the C author’s code and have been written performing similar
degree of optimizations. On the contrary, the FORTRAN code for
the exact solution to the Riemann problem, available from Martı́
& Müller (2003), was found to be more than a factor of 7 slower
than the HLL solver. We believe that this might be due to a lower
degree of optimization and by the time-consuming numerical inte-
gration across the rarefaction fan (Pons et al. 2000). For illustrative
purposes, we consider the first four one-dimensional tests and the
two-dimensional Riemann problem. Integrations have been carried
using the first-order scheme on 4000 and 4002 zones, respectively.
No optimization flags were used during the compilation.

From the table, one can easily conclude that the HLLC scheme
requires little additional costs with respect to the HLL approach
(between 4 and 7 per cent in one dimension), while the iterative
non-linear solver is certainly more expensive, being by a factor of
more than 30 per cent slower.

In making the comparison, however, one should keep in mind
that HLL-type solvers are iteration-free since the underlying algo-
rithms always require a fixed number of operations, regardless of
the initial condition. On the contrary, iterative non-linear Riemann
solvers have a certain degree of adaptability since the number of
iterations to achieve convergence depends on the strength of the
discontinuity at a zone interface. In smooth regions of the flow, for
example, fewer iterations are usually needed. This explains why the
fourth test problem is particularly time-consuming, since a stronger
discontinuity is involved.

In this respect, a direct comparison between different Riemann
solvers becomes problem-dependent and can be used only as an
order-of-magnitude estimate. Conversely, we do not expect the
HLLC/HLL efficiency ratio to change with increasing complexity
of the flow patterns. For this reason, we believe that for problems
involving rich and complex structures the trade-off between com-
putational efficiency and quality of results is certainly worth the
effort.

6 C O N C L U S I O N S

We have presented, for the first time, an extension of the HLLC
scheme by Toro et al. (1994) to relativistic gas dynamics. The solver
is robust, computationally efficient and complete, in that it considers
the full wave structure in the solution to the Riemann problem. The
solver retains the attractive feature of being positively conservative,
typical of the HLL scheme family.

The major improvement over the simple single-state HLL solver
is the ability to resolve contact and tangential discontinuities. This
property has been demonstrated by direct comparisons in several
one- and two-dimensional test problems, where differences are
strongly evident. The results indicate that the new HLLC solver at-
tains a sharper representation of discontinuities, quantitatively simi-
lar to the exact but algebraically and computationally more intensive
nonlinear Riemann solver.

The additional computational cost over the traditional HLL ap-
proach is less than 8 per cent and we believe that the improved quality
of results largely justifies the trade-off between the two approximate
Riemann solvers.

Extension to relativistic magnetized flows will be considered in
a forthcoming paper. We note, however, that the HLLC formalism
presented in this work can be easily generalized to the magnetic
case with vanishing normal component of the magnetic field. When
this degeneracy occurs [as in the propagation of jets with toroidal
magnetic field (see for example Leismann et al. 2005)], in fact,

the solution to the Riemann problem is entirely analogous to the
non-magnetized case, since only three waves are actually involved.
This extension will be presented in Mignone, Massaglia & Bodo
(2005b).

Finally, we mention that the relativistic HLLC scheme does not
make any assumption on the equation of state, and efforts to incor-
porate different equations of state should be minimal.
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A P P E N D I X A : P RO O F O F λL �λ
∗ �λR

In what follows we prove some important results concerning the pos-
itivity of our relativistic HLLC scheme. The proof is given below in
Proposition A4. Propositions A1–A3 demonstrate some preliminary
results.
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We assume that the fastest and slowest signal velocities are com-
puted according to the prescription given in Section 3.1.1, and that
λR > 0 and λL < 0, which is the case of applicability for the inter-
mediate fluxes (13). Obviously, the initial left and right states are
supposed to be physically admissible, i.e. they belong to the set G
defined in Section 3.1.2

Proposition A1. AR > 0, AL < 0.

Proof. We will only prove AR > 0, since the proof for AL is similar.
For the sake of clarity, we omit the subscript R. Using the definition
of A given after equation (17) one has

A = (E + p)
[
λ

(
1 − σ

�

)
− vx

]
, (A1)

where σ = c2
s /γ

2 is always positive. Equation (40) is always positive
for λ > λ0, where

λ0 ≡ �vx

� − σ
. (A2)

However, according to the choice given in Section 3.1.1, λ must
satisfy

f (λ) = (λ − vx )2 − σ

1 − c2
s

(1 − λ2) � 0, (A3)

with σ s = σ/(1 − c2
s ). Equation (A3) simply states that λ must be

greater than the root with the positive sign λ+ (for the left state,
λL is always less than the root with the negative sign λ−). Direct
substitution of λ0 from (A2) into (A3) shows, after some algebra,
that

f (λ0) � K1

[ − c4
s + (

v2
x + 2�

)
c2

s − �2
]
, (A4)

where equality occurs in the limit of zero tangential velocities and
K1 is always a positive quantity. Since 1 < � < 2 and c2

s has the
limiting value (� − 1), the expression in square brackets is always
negative, which means that λ � λ+ > λ0. This implies that A ≡ AR

is always positive with our choice of λ ≡ λR.
Since one can prove, in a similar way, that AL < 0, we have the

important result that U hll
E = AR − AL > 0.

Proposition A2. B R + AR > 0, B L − AL > 0.

Proof. Again, we only give the proof for the right state, the other
case being similar. The function A + B (the subscript R is omitted),
with A and B defined after equation (17), increases linearly with λ

and is positive for λ > λ0, where

λ0 = vxγ
2�(vx + 1) + c2

s

γ 2�(vx + 1) − c2
s

. (A5)

However, direct substitution of λ0 in (A3) shows, after extensive
manipulations, that

f (λ0) = −K2

[
c4

s − (1 + 2�)c2
s + γ 2�2

(
1 − v2

x

)]
, (A6)

where K2 is always a positive quantity. It can be easily verified that
the function in square brackets is always positive if c2

s ∈ [0, � − 1]
and 1 < � < 2. Thus we must have B R/AR > −1.

Proposition A3. λL AR − AR < 0, λR AL − B L > 0.

Proof. For the right state we have that

λL A − B � λ− A − B �
(

2v

1 + σs
− λ

)
A − B, (A7)

where the last inequality follows from the fact that the two roots of
equation (A3) satisfy

λ− = 2v

1 + σs
− λ+ and λ+ � λ. (A8)

Using the fact that λ2(1 + σs) � 2λv − v2 + σ s and that A > 0, the
last expression in equation (A3) can be shown to obey(

2v

1 + σs
− λ

)
A − B � g, (A9)

where

g = K3

[
v2

(
� − c2

s − 1
) + 1 − � + c2

s − 2c2
s v

2
t

]
, (A10)

with K3 being a positive quantity. The expression in square brackets
in equation (A10) is always negative under the same assumptions
as used previously. Thus we have λL < B R/AR and, similarly, one
can prove that λR >B L/AL.

Proposition A4. λL � λ∗ � λR .

Proof. We now show that the choice of eigenvalues given in Sec-
tion 3.1.1 always guarantees λL � λ∗ � λR.

The starting point is to note that the quadratic equation (18) can
be more conveniently written as(

ALλ∗ − BL

)(
1 − λRλ∗) = (

ARλ∗ − BR

)(
1 − λLλ∗), (A11)

which defines the intersection of two quadratic functions. The
parabola on the left-hand side vanishes in λ∗ = 1/λR > 1 and
λ∗ = B L/AL < 1, whereas the parabola on the right-hand
side vanishes in λ∗ = 1/λL < −1 and λ∗ = B R/AR > −1.
Moreover, the two quadratics have the same concavity, since
sign(ALλR) = sign(ARλL) = −1. Thus the intersection must nec-
essarily satisfy

min

(
BR

AR
,

BL

AL

)
� λ∗ � max

(
BR

AR
,

BL

AL

)
. (A12)

However, for any λ ∈ (−1, 1) one has

λA − B = (λ − vx )2(E + p) + p(1 − λ2) > 0, (A13)

which, together with the results previously shown, implies that

1 > λR > max

(
BR

AR
,

BL

AL

)
,

−1 < λL < min

(
BR

AR
,

BL

AL

)
.

(A14)

and hence

λL � λ∗ � λR. (A15)
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