
John von Neumann Institute for Computing

Towards a Distributed Scalable Data Service
for the Grid

M. Aldinucci, M. Danelutto, G. Giaccherini,
M. Torquati, M. Venneschi

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 73-80, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33



1

Towards a distributed scalable data service for the Grid∗

M. Aldinuccia, M. Daneluttob, G. Giaccherinib, M. Torquatib, and M. Vanneschib

aInstitute of Information Science and Technologies (ISTI) – National Research Council (CNR),
Via Moruzzi 1, I-56124 Pisa, Italy

bDepartment of Computer Science, University of Pisa,
Largo B. Pontecorvo 3, I-56127 Pisa, Italy

Abstract: ADHOC (Adaptive Distributed Herd of Object Caches) is a Grid-enabled, fast, scalable
object repository providing programmers with a general storage module. We present three different
software tools based on ADHOC: A parallel cache for Apache, a DSM, and a main-memory parallel
file system. We also show that these tools exhibit a considerable performance and speedup both in
absolute figures and w.r.t. other software tools exploiting the same features.

Keywords: Grid, Data Grid, Web caching, Apache, PVFS, DSM, Web Services.

1. Introduction

The demand for performance, propelled by both challenging scientific and industrial problems,
has been steadily increasing in past decades. In addition, the growing availability of broadband
networks has boosted data traffic and therefore the demand for high-performance data servers. Dis-
tributed memory Beowulf clusters and Grids are gaining more and more interest as low cost parallel
architectures meeting such performance demand. This is especially true for industrial applications
that require a very aggressive development and deployment time for both hardware solutions and
applications, e.g. software reuse, integration and interoperability of parallel applications with the
already developed standard tools.

However, these needs become increasingly difficult to be met with the growing scale of both
software and hardware solutions. The Grid is a paradigmatic example. The key idea behind Grid-
aware applications consists in making use of the aggregate power of distributed resources, thus
benefiting from a computing power that falls far beyond the current availability threshold in a single
site. However, developing applications able to exploit it is currently likely to be a hard task. To
realize the potential, programmers must design highly concurrent applications that can execute on
large-scale platforms that cannot be assumed neither homogeneous, secure, reliable nor centrally
managed. Also, these applications should be fed with large distributed collections of data.

ADHOC (Adaptive Distributed Herd of Object Caches), is a distributed object repository [3]. It
provides applications with a distributed storage manager that virtualizes Processing Elements (PEs)
primary or secondary memories into a unique common memory. However, it is not just another Dis-
tributed Shared Memory (DSM), it rather implements a more basic facility. The underlying idea of
ADHOC design is to provide the application (and programming environment) designer with a toolkit
to solve data storage problems in the Grid framework. In particular, it provides the programmer with
building blocks to set up client-server and service-oriented infrastructures which can cope with Grid
difficult issues aforementioned. The semi-finished nature of ADHOC ensures high adaptability and
extendibility to different scenarios, and rapid development of highly efficient storage and buffering

∗This work has been supported by the Italian MIUR FIRB Grid.it project No. RBNE01KNFP.

73



2

ADHOC distributed data server

ADHOC ADHOC

proxy

client

proxy

client

proxy

client

ADHOC

proxy

client

proxy

client

a)

eca

a

eca

b c d e

b d b d

cea b d

S1 S2 S3 S4

S1 S2 S3 S4

G1=[S1]; G2=[S2]; G3=[S3]; G4=[S4]

G5=[S1,S3]; G6=[S2,S4]

K =
= [G5,G6]

= [G1,G2,G3,G4]

b)

Figure 1. a) Typical architectural schema of applications based on ADHOC. b) Example of two
different distribution and replication schemas (� and �) for a collection K of objects a, b, c, d over
4 ADHOC servers S1, S2, S3, S4 (grey objects are replicas).

solutions meeting industrial needs.
In this paper, we discuss ADHOC and its grid-oriented features. Also, we present the design of

three different ADHOC-based software tools and we compare their performance with others exploit-
ing similar features:

1. A cache built on top of ADHOC for farms of the Apache Web server. It enables a farm of
Apache web servers to exploit the aggregate memory space and network bandwidth of many
PEs with a sensible speedup w.r.t. native Apache cache, and with no modification to the
Apache core since it can be attached as plug-in.

2. A object based DSM for ASSIST [2], which is a high-level programming environment for
Grid applications. ADHOC with a suitable proxy library provides ASSIST with a shared mem-
ory abstraction matching typical Grid requirements by supporting heterogeneity and dynamic
availability of platforms.

3. ASTFS, a PVFS-like parallel virtual file system. Differently from PVFS1 [5], it supports
heterogeneous platforms and data caching, while performing better or comparably w.r.t. PVFS
working on a RAM-disk file system.

2. The ADHOC data server

The ADHOC underlying design principle consists in clearly decoupling the management of com-
putation and storage in distributed applications. The development of a parallel/distributed applica-
tion is often legitimated by the need of processing large bunches of data. Therefore, data storages are
required to be fast, dynamically scalable and enough reliable to survive to some hardware/software
failures. Decoupling helps in providing a broad class of parallel applications with these features
while achieving very good performances. ADHOC virtualizes a PE primary (or secondary) memory,
and cooperating with other ADHOCs, it provides a common distributed data repository.

The general ADHOC-based architecture is shown in Fig. 1. Clients may access data through
different protocols, which are implemented on client-side within proxy libraries. Proxies may act
as simple adaptors, or exploit complex behaviors also cooperating with other client-side proxies
(e.g. distributed agreement, dotted lines in the figure). Both clients and servers may be dynamically
attached and detached during the program run.

A set of ADHOCs implements an external storage facility, i.e. a repository for arbitrary length,

74



3

contiguous segments of data (namely objects). An object cannot be spread across different ADHOCs,
it can be rather replicated on them. Objects can be grouped in ordered collections of objects, which
can be spread across different ADHOCs.

Both objects and their collections are identified by keys with fixed length. In particular, the key of
a collection specify to which spread-group and replica-group the collection belong. These groups
logically specify how adjacent objects in the collection are mapped and replicated across a number of
logical servers. The actual matching between logical servers and ADHOCs is performed at run-time
through a distributed hash table. ADHOC API enables to get/put/remove/execute an object,
and to create/destroy a key for a collection of objects. ADHOC does not provide collective
operations to manage collections of objects (except key creation and destruction), these collective
operations can be implemented within the client proxy. Each ADHOC manages an object storage and
a write-back cache that are used to store server home objects and remote home objects respectively.

An example is shown in Fig. 1 b). Adjacent objects a, b, c, d, e of the collection K are stored
in the distributed data server in two different ways (� and �). Adjacent objects of a collection are
allocated and stored in a round robin way along a list of replica-groups. Each object is stored in
each server appearing in the replica-group. Many spread-groups and replica-groups can be defined
for a distributed data server, moreover they can be dynamically created and modified. This enables
both to attach new ADHOCs to a distributed server and to re-map (migrate) objects among different
ADHOCs within a distributed server. Once an ADHOC does not appear in any group and is empty, it
can be easily detached with no data loss (it can also detached at any moment, possibly with partial
data loss). Object re-mapping might be an expensive operation and is supposed to be infrequent.
Notice that since the collection and object keys remain unchanged in re-mapping, data may be re-
mapped at run-time while keeping valid all involved keys. As an example, a distributed linked list
using keys as pointers may be transparently re-mapped.

ADHOC execute(key,method) operation enables the remote execution of a method, provided
the key refers a chunk of code instead of plain data (i.e. an actual object which is executable on
the target platform). This operation is meant as mechanism to extend server core functionalities for
specific needs. As an example, lock/unlock, object consistency management, and atomic sequences
of operations (e.g. get&remove) on objects have been introduced in ADHOC in this way.

As sketched in Fig. 2, ADHOCs can be connected though firewalls and across networks exploiting
different private address ranges. In particular:

• ADHOCs can connect one another with a configurable number and range of ports. An AD-
HOC-based distributed server with n ADHOCs can be set up across n firewalls, n − 1 of them
having outbound connectivity only, and 1 firewall having just 1 open in-bound port. However,
the richer is the connectivity among servers the better is the expected performance.

• ADHOCs may work as relays for others. This enable to set up a distributed data server across
networks with different private address ranges, that is the usual configuration of clusters be-
longing to a Grid. For get/put objects, each connected graph of ADHOCs is functionally
equivalent to a complete graph. However, currently only directly connected ADHOCs may be-
long to the same spread- or replica-group (collection cannot be spread through relays). More-
over, since ADHOCs may be dynamically attached, different subgraphs are not supposed to be
started all together, as may happen in the case they are executed through different job sched-
ulers on top of different clusters.

2.1. ADHOC Implementation
An ADHOC is implemented as a C++ single thread process; it relies on non-blocking I/O to man-

age concurrent TCP connections [6]. The ADHOC core consists of an executor of a dynamic set of

75



4

proxy

client
proxy

client

proxy

client
proxy

client

ADHOC

proxy

client

proxy

client

proxy

client
proxy

client

proxy

client
proxy

client

ADHOC

proxy

client

proxy

client

ADHOC

proxy

client
proxy

client

proxy

client
proxy

client

ADHOC

proxy

client

proxy

client

Network with private addresses (e.g. cluster)Network with private addresses

internet relayserver + cache 
+ relay

firewalls

server + cache

Figure 2. ADHOC-based distributed data server running onto different clusters with private address
ranges and protected by firewall.

finite state machines, namely services, which reacts to socket-related events raised by O.S. kernel
(i.e. connections become writable/readable, new connection arrivals, connection closures, etc.). In
the case one service must wait on an event, it consolidates its state and yields the control to another
one. The ADHOC core never blocks on I/O network operations: neither on read()/write() sys-
tem calls nor on ADHOC protocol primitives like remote PE memory accesses. The event triggering
layer is derived from the Poller interface [9], and may be configured to use several POSIX con-
nections multiplexing mechanisms, such as: select, poll, kqueue, and Real-Time signals. Non-
blocking I/O on edge-triggered signaling mechanism is known to be the state-of-the-art of server
technologies over TCP [7]. Indeed, an ADHOC can efficiently serve on a single port many clients,
each of them supporting thousand of concurrent connections.

We experienced that the ADHOC-based distributed data server exhibits a close to perfect speedup
in parallel configuration (many connected ADHOCs), both in supplied memory room and aggregate
network bandwidth. It also supports heterogeneous distributed platforms, in particular it has been
extensively tested on Linux (2.4.x/2.6.x) and Mac OS X (10.3.x/10.4.x). We refer back to [3] for any
further detail on ADHOC implementation and testing.

2.2. ADHOC as a Grid-aware software
ADHOC is a part of the ASSIST Grid-aware programming environment [1], and it is building

block for Grid-aware applications and programming environments because it can cope with many of
the key issues of the Grid:

• Connectivity: firewalls, multi-tier networks with private address ranges.
• Performance and fault-tolerance: data distribution, replication, and caching (parallelism and

locality), dynamic data re-distribution, adaptability through dynamic reconfiguration of the set
of machines composing the distributed server.

• Heterogeneity and deployment: it is free GPL software that can be easily ported on POSIX
platforms; it has been tested on several Linux and BSD platforms; it supports heterogeneous
clusters (in O.S. and CPU); it can be deployed through standard middleware (as Globus);
several ADHOCs composing a single distributed server do not need to start all together, thus
they can be deployed on different clusters through different job schedulers.

76



5

Unlike some other approaches to data grid (e.g. European Data Grid [10]) ADHOC does not
provide a rigid middleware solution for a particular problems (e.g. very large, mostly read-only sci-
entific data). It rather provides the application developer with a configurable and extendible building
block to target quite different problems, in both scientific and industrial computing, ranging from
high-throughput grid data storage to low-latency high-concurrency cluster and enterprise grid data
services.

3. Apache Web Caching Experiments

The ADHOC+Apache architecture is compliant to Fig. 1 a). In this case the client is the Apache
Web server, the proxy is a modified version of mod mem cache Apache module and dashed lines
are not present. In particular, mod mem cache has been modified by only substituting local memory
allocation, read and write with ADHOC primitives.

Observe that ADHOC+Apache architecture is designed to improve Apache performance whether
the performance bottleneck is memory size, typically in the case the working set does not fit the main
memory. In all other cases, the ADHOC+Apache architecture does not introduce any significant
performance penalties w.r.t. the stand-alone Apache equipped with the native cache.

We measured the performance of Apaches+ADHOC architecture on a 21 PEs RLX Blade; each
PE runs Linux (kernel-2.6.x) and is equipped with an Intel P3@800MHz, 1GB RAM, a 4200rpm
disk and a 100Mbit/s switched Ethernet devices. The data set is generated according to [4] by using
a Zipf-like request distribution (α = 0.7), and has a total size of 4GBytes. In all tests we used
the Apache 2.0.52 Web server in the Single-Process Multi-Threaded. HTTP requests are issued by
means of the httperf program. In Fig. 3 we compare Apache against Apache+ADHOC performances.
The test takes in to account three basic configurations:

� an Apache+ADHOC running on different PEs, ADHOC exploiting 900MB of object storage
total memory accessed by all Apache threads.

� a stand-alone Apache with no cache.
� a stand-alone Apache with the mod mem cache (Apache native cache) exploiting a maximum

of 900MB.

As shown by �, the Apache with the original cache lose its stability when the requests rate grows. In
this case, Apache spawn more and more threads to serve the increasing pressure of requests, inducing
harmful memory usage: the competition of cache subsystem and the O.S. in both memory space and
memory allocation leads the O.S. to the swap border resulting in a huge increase of reply latency.
Quite surprisingly, the Apache with no cache performs even better (�). In reality this behavior is due
to the File System buffer that acts as a cache for Apache disk accesses, and which gracefully decrease
its size in case the system requires more memory to manage many threads avoiding swapping. In
this case the performance also depends on site organization on disks. In general, the FS cache is
unsuitable for Web objects since requests do not exploit spatial and temporal locality w.r.t. disk-
blocks [4]. Moreover, FS cache is totally useless for dynamic Web pages, for which we experienced
the effectiveness of the Apache native cache module [8]. As a matter of fact, the 2PEs figures (�)
confirm that mapping Apache and ADHOC on different PEs significantly improves performances.

As shown in [3], the gain of the Apache+ADHOC architecture is even greater for Apache Multi-
Process Multi-Threaded configuration since Apache processes can share a common memory through
ADHOC. Additional experiments on parallel configuration confirm that a single ADHOC may sup-
port many Apaches with a very good scalability [3].

77



6

0

20

40

60

80

100

120

30 40 50 60 70 80 90 100 110 120

N. of requests issued per second

N
. o

f r
eq

ue
st

s 
se

rv
ed

with ADHOC900 2PEs

no cache (FS cache) 1PE

native cache900 1PE

�

�

�

�

�

�

Figure 3. Evaluation of ADHOC as Apache
cache.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10

N. of Processing Elements

A
gg

re
ga

te
 B

an
dw

id
th

ADHOC references (write)
ADHOC references (read)
old references (read)
old references (write)

Figure 4. Evaluation of ADHOC-based
DSM.

4. An ADHOC-based DSM for ASSIST

ASSIST is a programming environment aimed at the development of distributed high-performance
applications on Grids [2]. ASSIST applications are described by means of a coordination language,
which can express arbitrary graphs of either sequential or parallel components, which may exploit
distributed shared data structures.

Up to now, these data structures were stored in a standard DSM implemented within ASSIST run-
time. This DSM was implemented as a library providing typed global pointers (called references),
it requires the full connectivity with all partners, and can hardly deal with firewalls. The last version
of ASSIST (v1.3) includes a novel ADHOC-based implementation of references. This new imple-
mentation overcome mentioned problems of the previous version while improving the overall DSM
flexibility and performance:

• Data is stored externally to computation in specialized servers. The data can now survive to
application lifespan, and it can independently mapped from computational activities. Figure. 4
describes aggregate bandwidth of reading/writing a spread array (int[800M], as a collection
of 16KB objects). The ADHOC-based solution exhibit a close to optimal absolute figures, and
a clear performance gain with respect the previous version of the DSM.

• ADHOC can be dynamically started and stopped to meet variable application requirements
and Grid platforms availability over time.

• Data can be migrated among different ADHOCs to implement dynamic load-balancing schemas
for memory allocation and network throughput, meeting Grid platforms unsteadiness and
changing load over time.

• ADHOC-based distributed data server can easily wrapped to supply a HTPP/SOAP data ser-
vice for the Grid.

5. An ADHOC-based Parallel File System

The Parallel Virtual File System (PVFS) [5,11] is one of the most used high-performance and
scalable parallel file system for PC clusters that requires no special hardware.

In order to provide high-performance access to data stored on the file system by many clients,
PVFS spreads data out across multiple cluster I/O nodes (IONs). By spreading data across multiple

78



7

I/O nodes, applications have multiple paths to data through the network and multiple disks on which
data is stored. This eliminates single bottlenecks in the I/O path and thus increases the total potential
bandwidth for multiple clients, or aggregate bandwidth. Metadata stored in a special node, called
manager (MNG). Metadata is information that describes a file, such as its name, its place in the
directory hierarchy, its owner, and how it is distributed across nodes in the system. When reading
a file from PVFS, a client contacts MNG node to retrieve file meta-data, then it gather file parts,
each from the proper IONs. As show in Fig. 5 a), a PVFS client may benefit from the concurrent
connection to many IONs, thus benefiting from network aggregate bandwidth.

The ADHOC-based FS (called ASTFS) implements the same functionalities of PVFS, and exploits
a similar API. ASTFS API is realized by means of a proxy library linked to the application client
(see Fig. 1) which translates file-oriented commands in a sequence of ADHOC commands. Figure 5
c) reports a comparison, in terms of aggregate bandwidth at the client ends, between PVFS and
ASTFS (tested architectures are shown in Fig. 5 a) and b), respectively); ASTFS is configured to
exploit the full connectivity among ADHOC servers. As shown in Fig. 5 c), PVFS and ASTFS
(working on RAM-disk) exhibit quite the same bandwidth, which should be considered a very good
result since PVFS represent the state of the art of distributed FS for clusters. ASTFS, differently
from PVFS, neither requires the full connectivity among PEs (client-server, server-server). As a
matter of fact, grid nodes do not exhibit a complete graph of links/connections due to the multi-tier
network structure, firewalls, private address ranges in clusters, etc. We also experienced that a single
link between clients is not a limiting factor for client throughput towards the servers. In particular,
ASTFS multi-threaded proxy succeeds to pipeline multiple requests on a single link relying on the
ability of ADHOC in sustaining a very high number of concurrent requests on it.

ASTFS has been primary designed to manage main memory allocation, but it can be easily con-
figured to use disk as storage. It also exhibits some additional features with respect to PVFS, such
as the support for heterogeneous platforms, and for caching of read-only opened files. As shown in
Fig. 5 c) the FS performance significantly increases whether each ADHOC is configured to exploit a
little cache (10 MB). As typical for caching, the equivalent speedup in terms of aggregate bandwidth
is super-linearly boosted.

The same test has been also performed in the Fig. 2 scenario: the two 6PEs clusters are hosted in
two different institutes of Pisa University (each of them protected by its own firewall with one open
port), they are internally linked with a fast Ethernet, and connected one to the other with a 2 MB/s
link (average). Just the front-end machine of each cluster can connect to its counterpart in the other
cluster. On this scenario, we experienced an aggregate bandwidth at clients ends of 34 MB/s with
no cache. Notice that the ADHOC hosted in the font-end node can be configured to exploit a cache
of remote sites data considerably improving the overall performance.

6. Conclusions

Overall, we envision a complex application made up of decoupled components, each delivering a
very specific service. Actually, ADHOC provides the programmer with a data sharing service. We
introduced ADHOC, a fast and scalable “storage component” which cope with many of Grid key
issues, such as performance, adaptivity, fault-tolerance, multi-site deployment and run (despite of
firewalls, job schedulers, private addresses). We shown that ADHOC simplicity is its strength: it en-
abled the rapid design and development of three different memory management tools in few months.
These tools exhibit a comparable or better performance with respect their specialized counterparts.
In some cases, applications relying on these tools became ready for the Grid with no modifications
to their code. ADHOC is freely available under GPL license as part of the ASSIST toolkit.

79



8

. .
 .. .
 .

. .
 .

PE 1

PE 0

client0

client1

clientn

ION0

ION1

MNG

IONn

client0

client1

clientn

ADHOC0

ADHOC1

ADHOCn

. .
 .

a) PVFS b) ASTFS

PE n

PE 0

PE 1

PE n

0

20

40

60

80

100

120

140

160

180

4 6 8 10 12

N. of Processing Elements

A
gg

re
ga

te
 B

an
dw

id
th

ASTFS with cache

ASTFS

PVFS

c) 

Figure 5. a) Many clients accessing a PVFS. Each PE hosts a client is required to be an ION. Solid
edges show data paths, dashed edges meta-data paths. b) Many clients accessing an ASTFS. c)
Comparison among PVFS and ASTFS. Each client read a partition of the file in segments of 10MB
randomly chosen within its partition. In both cases, each client reads the same 800MByte file spread
among all PEs.

References

[1] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi, M. Van-
neschi, and C. Zoccolo. Components for high performance Grid programming in Grid.it. In V. Getov
and T. Kielmann, editors, Proc. of the Workshop on Component Models and Systems for Grid Applica-
tions, CoreGRID series. Springer Verlag, January 2005.

[2] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a research frame-
work for high-performance Grid programming environments. In J. C. Cunha and O. F. Rana, editors,
Grid Computing: Software environments and Tools. Springer Verlag, January 2006.

[3] M. Aldinucci and M. Torquati. Accelerating apache farms through ad-HOC distributed scalable object
repository. In M. Danelutto, M. Vanneschi, and D. Laforenza, editors, 10th Intl Euro-Par 2004: Parallel
and Distributed Computing, volume 3149 of LNCS, pages 596–605, Pisa, Italy, August 2004. Springer
Verlag.

[4] L. Brelau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence
and implications. In Proc. of the Infocom Conference, 1999.

[5] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A parallel file system for linux clusters.
In Proc. of the 4th Linux Showcase and Conference, pages 317–327, Atlanta, GA, USA, October 2000.

[6] A. Chandra and D. Mosberger. Scalability of Linux event-dispatch mechanisms. Technical Report
HPL-2000-174, HP Labs., Palo Alto, USA, December 2000.

[7] L. Gammo, T. Brecht, A. Shukla, and D. Pariag. Comparing and evaluating epoll, select, and poll event
mechanisms. In Proc. of the Ottawa Linux Symposium, Ottawa, Canada, 2004.

[8] A. Iyengar and J. Challenger. Improving Web server performance by caching dynamic data. In Proc. of
the USENIX Symp. on Internet Technologies and Systems Proceedings, Berkeley, CA, USA, Dec. 1997.

[9] D. Kegel. Poller Interface, 2003. (http://www.kegel.com/poller/).
[10] E. Laure, H. Stockinger, and K. Stockinger. Performance engineering in data Grids. Concurrency and

Computation: Practice and Experience, 17(2–4):171–191, 2005.
[11] The PVFS home page. (http://www.parl.clemson.edu/pvfs/index.html).

80




