JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia

This is the author's manuscript

Original Citation:
JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia / Pich A; Riera L; Sismondi F; Godio L; Davico Bonino L; Marmont F; Francia di Celle P.. - In: JOURNAL OF CLINICAL PATHOLOGY. - ISSN 0021-9746. - STAMPA. - 62(2009), pp. 798-801.

Availability:
This version is available http://hdl.handle.net/2318/61942 since

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
JAK2

activating mutation is associated with the myeloproliferative type of chronic
myelomonocytic leukaemia

J Clin Pathol 2009 62: 798-801
doi: 10.1136/jcp.2009.065904

Updated information and services can be found at:
http://jcp.bmj.com/content/62/9/798.full.html

These include:

References
This article cites 15 articles, 6 of which can be accessed free at:
http://jcp.bmj.com/content/62/9/798.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic collections
Articles on similar topics can be found in the following collections

Molecular genetics (2002 articles)
Immunology (including allergy) (43767 articles)
Clinical diagnostic tests (18740 articles)

Notes

To order reprints of this article go to:
http://jcp.bmj.com/cgi/reprintform

To subscribe to Journal of Clinical Pathology go to:
http://jcp.bmj.com/subscriptions
JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia

A Pich,1 L Riera,2 F Sismondi,2 L Godio,1 L Davico Bonino,1 F Marmont,3 PF Francia di Celle2

ABSTRACT

Background: Chronic myelomonocytic leukaemia (CMML) is a haematopoietic malignancy with heterogeneous clinical and morphological features. It is classified in the World Health Organization myeloproliferative-myalloidlastic overlap category. JAK2V617F mutation can be found in a large percentage of patients with myeloproliferative neoplasms.

Aims: To investigate the association between JAK2V617F mutation and clinical, haematological and bone marrow histological features in CMML and to verify whether the mutation is associated with the myeloproliferative type of the disease.

Methods: 78 consecutive patients with newly diagnosed CMML from 2004 to 2008 were included in the study. JAK2V617F mutation was assessed using direct sequencing of exon 14 or by allele-specific PCR from total peripheral blood or bone marrow samples.

Results: JAK2V617F mutation was identified in eight cases (10.2%). All patients with the mutation presented with splenomegaly and had a significantly higher haemoglobin level and neutrophil count than patients without the mutation. All bone marrow biopsies of JAK2V617F-mutated CMML showed increased erythropoiesis, a marked myeloid and megakaryocytic hyperplasia with occasionally clustered megakaryocytes, and a mild or moderate (grade 1 or 2) fibrosis; six cases showed an increased number of dilated sinusoids and reactive lymphoid nodules.

Conclusions: The results indicate that JAK2V617F mutation is associated with clinical and morphological features of the myeloproliferative type of CMML. Therefore, JAK2 mutation analysis together with bone marrow morphology could help in a more appropriate classification of the disease.

Chronic myelomonocytic leukaemia (CMML) is a clonal disorder of a bone marrow stem cell, characterised by a persistent peripheral blood monocytosis. The clinical, haematological and morphological features of the disease are heterogeneous and vary from predominantly myelodysplastic to mainly myeloproliferative patterns.1–3 According to the World Health Organization (WHO) classification of myeloid neoplasias, CMML is placed in the myeloproliferative-myalloidlastic overlap category.4 However, a more appropriate classification of the disease would be desirable.

A somatic point mutation (V617F) in a highly conserved residue of the pseudokinase domain of the Janus kinase 2 (JAK2) has been detected in a large percentage of patients with myeloproliferative disorders, such as polycythaemia vera (65–97%), essential thrombocythaemia (23–79%) and primary myelofibrosis (35–78%).5–9 JAK2V617F mutation has been rarely observed in patients with myelodysplastic/myeloproliferative diseases or myelodysplastic syndromes.10–12

The aim of this study was to search for JAK2V617F mutation in CMML and investigate the relationship with clinical, haematological and bone marrow (BM) histological features, to verify whether the JAK2V617F mutation is associated with the myeloproliferative type of CMML.

METHODS

Patients

A total of 78 consecutive patients with newly diagnosed CMML, admitted to the Division of Haematology, San Giovanni Hospital and University of Turin, Italy, from 2004 to 2008 were included in the study. Diagnosis of CMML was performed according to WHO criteria.4 There were 24 women and 54 men; the mean age was 70 years (range 36–88 years). The study was carried out with the approval of the local ethics committee. BM biopsies were taken during initial investigation, from posterior–superior iliac crest, using a Jamshidi needle.

Histology

Specimens were immediately fixed in buffered formalin for 24 h, decalcified in Osteoedec (EDTA, HCl mixture; Bioptica, Milan, Italy) for 6 h, dehydrated, and embedded in paraffin. Serial sections (3 μm thick) were stained with H&E, Dominici, Perls and Gomori stains. Immunohistochemistry was performed with an automatic stainer device (Dakoautostainer; Dako, Glostrup, Denmark), using the Labelled Streptavidin-Biotin 2 System detection kit (Dako), diaminobenzidine as a chromogen, and the monoclonal antibodies anti-CD34 (Clone QBEnd/10), anti-CD31 (clone JC70A), anti-von Willebrand Factor (Clone F8/86), anti-glycophorin A (Clone JC159), anti-CD68 (clone PG-M1), and the polyclonal antibody anti-human myeloperoxidase (all from Dako, Glostrup, Denmark). The following histological parameters were evaluated: marrow cellularity, hyperplasia and dysplasia of the erythroid, myeloid and megakaryocyte lineages, percentage of monocyes and CD34-positive blasts, marrow fibrosis, presence of dilated sinusoids and reactive lymphoid nodules. Bone marrow cellularity was determined taking into account the age-related changes in the study population.13 The different cell lineages were
JAK2V617F mutation analysis

JAK2V617F mutation testing was performed on peripheral blood or bone marrow samples. RNA and/or DNA were automatically extracted by using Maxwell 16 blood DNA purification kit, Wizard SV 96 genomic DNA purification system or SV96 total RNA isolation system following the manufacturer’s instructions (Promega Corporation, Madison, Wisconsin, USA). cDNA was prepared by reverse transcription following the standardised BIOMED-1 protocol.15 JAK2V617F mutation was assessed in all cases using direct sequencing of exon 14 cRNA: PCR primers (forward: 5'-GTAGGAGACTACGGTCAACTG-3'; reverse: 5'-TGATGCGCCATGCCA-3') were designed to amplify a 275 bp segment of JAK2 encompassing the codon for amino acid 617. The sequencing reaction was carried out using the Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, California, USA), and the analysis was performed on an ABI 310 automated capillary system, following the manufacturer’s instructions. All sequences of samples were independently examined by two pathologists (AP, LG) who had no knowledge of the mutational status. Disagreement between the observers was found in less than 10% of the cases. In these cases, a consensus interpretation was reached after re-examination of the slides with a double-headed microscope.

Statistical analysis

The independence between categorical variables and JAK2V617F status was estimated by the Fisher’s exact test. Continuous variables were compared by the Mann–Whitney U test. All data were processed with BMDF selected programs (2D, 3D, 7D, 4F).16

RESULTS

JAK2V617F mutation was identified in 8 of 78 cases (10.2%). The results of the association between JAK2V617F mutation and clinical, haematological and BM histological features in patients with CMML are summarised in tables 1 and 2. Of 37 patients that had palpable splenomegaly, 22 underwent an ultrasound or CT scan that showed a maximum diameter of the spleen ranging from 14 to 25 cm. All patients with JAK2V617F mutation presented with splenomegaly (palpable spleen or echographically/CT enlarged spleen more than 14 cm in the maximum diameter), while splenomegaly was found in only 29 of 70 JAK2V617F-negative patients (p = 0.001). Patients with JAK2V617F mutation had also significantly higher red blood cell count (4.747×10¹²/l versus 3.595×10¹²/l, p = 0.01), haemoglobin level (15.1 g/dl versus 10.5 g/dl, p = 0.02) and neutrophil count (22.624×10⁹/l versus 8.267×10⁹/l, p = 0.02) than patients without the mutation. No association was found for patient age, sex, white blood cell count, or platelet, monocyte or lymphocyte count. BM biopsies of CMML with JAK2V617F mutation showed a mean cellularity of 85% (range 70–100), a mean percentage of CD34-positive blasts of 5.75% (range 1–15) and a mean percentage of monocytes of 18.1% (range 15–25); these values were not different to BM biopsies of non-mutated cases. Erythroid hyperplasia was found in all mutated cases, but in only 20 of 70 (28.6%) non-mutated cases (p = 0.0001). A marked myeloid (fig 1) and megakaryocytic hyperplasia was seen in all mutated cases, but in only 60% and 50% of non-mutated cases (p = 0.02 and 0.006, respectively). Megakaryocytes were occasionally clustered and large, with hyperlobulated nuclei (fig 1, inset). Mild or moderate fibrosis (grade 1 or 2)13 was seen in only 13 of 70 (18.6%) non-mutated cases (p<0.00001). An increased number of dilated sinusoids and reactive lymphoid nodules was seen in six of mutated cases (75%), but in only 4 (5.7%) and 15 (21.4%) of non-mutated cases (p<0.0001 and 0.004, respectively).

DISCUSSION

Our results show that JAK2V617F mutation can be detected in a small number (8/78) of CMML, in accordance with previous studies. A semiquantitative evaluation by a score that was mainly based on their frequency in the normal BM:15 0, no increase in comparison with the normal state; +1, mild increase (corresponding to a mild hyperplasia); +2, moderate increase (moderate hyperplasia); +3, marked increase (marked hyperplasia). BM fibrosis was graded according to the criteria of the European consensus on grading bone marrow fibrosis13 and a semiquantitative scale was used: 0, scattered linear reticulin with no intersections, corresponding to normal bone marrow; +1, loose network of reticulin with many intersections, especially in perivascular areas (corresponding to a mild fibrosis); +2, diffuse and dense increase in reticulin with extensive intersections, occasionally with only focal bundles of collagen (corresponding to a moderate fibrosis). All biopsy specimens were independently examined by two pathologists (AP, LG) who had no knowledge of the mutational status. Disagreement between the observers was found in less than 10% of the cases. In these cases, a consensus interpretation was reached after re-examination of the slides with a double-headed microscope.

Table 1 Association between JAK2V617F mutation and clinical and haematological features in chronic myelomonocytic leukaemia (n = 78)

<table>
<thead>
<tr>
<th>Variable</th>
<th>JAK2V617F positive (n = 8)</th>
<th>JAK2V617F negative (n = 70)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>68.9 (8.3)</td>
<td>70.2 (10.9)</td>
<td>0.4</td>
</tr>
<tr>
<td>Haemoglobin, g/dl</td>
<td>13.1 (2.7)</td>
<td>10.8 (2.2)</td>
<td>0.02</td>
</tr>
<tr>
<td>WBC count, ×10⁹/l</td>
<td>28.386 (29.77)</td>
<td>18.039 (19.73)</td>
<td>0.1</td>
</tr>
<tr>
<td>Platelets, ×10⁹/l</td>
<td>205.5 (277)</td>
<td>139.1 (141)</td>
<td>0.6</td>
</tr>
<tr>
<td>Neutrophils, ×10⁹/l</td>
<td>22.624 (27.33)</td>
<td>8.267 (8.62)</td>
<td>0.02</td>
</tr>
<tr>
<td>Lymphocytes, ×10⁹/l</td>
<td>2.435 (1.047)</td>
<td>3.230 (4.910)</td>
<td>0.5</td>
</tr>
<tr>
<td>Monocytes, ×10⁹/l</td>
<td>2.890 (2.382)</td>
<td>3.631 (4.653)</td>
<td>0.8</td>
</tr>
<tr>
<td>Spleenomegaly, n (%)</td>
<td>8 (100)</td>
<td>29 (41.4)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Values are mean (SD), unless otherwise indicated.

WBC, white blood cell.

Table 2 Association between JAK2V617F mutation and bone marrow histology in chronic myelomonocytic leukaemia (n = 78)

<table>
<thead>
<tr>
<th>Variable</th>
<th>JAK2V617F positive (n = 8)</th>
<th>JAK2V617F negative (n = 70)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellularity*</td>
<td>85 (10.7)</td>
<td>83.3 (10.6)</td>
<td>0.8</td>
</tr>
<tr>
<td>CD34+ blasts*</td>
<td>5.75 (5.2)</td>
<td>3.04 (3.46)</td>
<td>0.09</td>
</tr>
<tr>
<td>Monocytes*</td>
<td>18.1 (3.72)</td>
<td>19.5 (8.2)</td>
<td>0.9</td>
</tr>
<tr>
<td>Fibrosis, n (%)</td>
<td>8 (100)</td>
<td>13 (18.6)</td>
<td><0.00001</td>
</tr>
<tr>
<td>Erythroid hyperplasia, n (%)</td>
<td>8 (100)</td>
<td>20 (28.6)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Myeloid hyperplasia, n (%)</td>
<td>8 (100)</td>
<td>42 (60)</td>
<td>0.02</td>
</tr>
<tr>
<td>Megakaryocytic hyperplasia, n (%)</td>
<td>8 (100)</td>
<td>35 (50)</td>
<td>0.006</td>
</tr>
<tr>
<td>Dilated sinusoids, n (%)</td>
<td>6 (75)</td>
<td>4 (5.7)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Reactive lymphoid nodules, n (%)</td>
<td>6 (75)</td>
<td>15 (21.4)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Values are mean (SD) percentages, unless otherwise indicated.

Fibrosis, mild or moderate fibrosis (grade 1 or 2).15
studies reporting mutations in 3%,17 7.8%10 and 13% of CMML.11 Interestingly, JAK2V617F mutation was associated with clinical, haematological and BM morphological features suggestive of a myeloproliferative disease. Indeed, the patients with JAK2V617F mutation all presented with splenomegaly and had significantly higher haemoglobin level, red blood cell and neutrophil count than patients without the mutation.

Furthermore, BM biopsy of CMML with JAK2V617F mutation showed in all cases marked erythroid, myeloid and megakaryocytic hyperplasia, with occasionally large and clustered megakaryocytes. In particular, a mild or moderate fibrosis (grade 1 or 2)15 was evident in BM biopsy of all mutated CMML, but in only 15 of 70 non-mutated cases (p<0.00001); an increased number of dilated sinusoids and reactive lymphoid nodules was seen in six of the mutated cases, but in only 4 and 15 of 70 non-mutated cases (p<0.0001 and 0.004, respectively). These findings are in contrast with those of Steensma et al12 who found primarily proliferative features in only one of three patients with JAK2V617F-mutated CMML, and are also partly different from those of Jelinkova et al13 who reported splenomegaly and megakaryocytic hyperplasia in only three and five of seven CMML patients, respectively. An appropriate classification of CMML is still controversial, and the use of the peripheral white blood cells at diagnosis (≤15×10⁹/l) as the single criterion for subclassification of the disease does not seem fully justified.17 Our results indicate that JAK2V617F mutation is associated with clinical and morphological features of the myeloproliferative type of CMML. Therefore, JAK2V617F mutation analysis together with bone marrow histopathology could help to provide a more appropriate classification of the disease.

