Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control

This is the author's manuscript

Original Citation:
Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control / Spadaro D.; Ciavarella A.; Zhang D.; Garibaldi A.; Gullino M.L.. - In: CANADIAN JOURNAL OF MICROBIOLOGY. - ISSN 0008-4166. - 56(2010), pp. 128-137.

Availability:
This version is available http://hdl.handle.net/2318/75208 since

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:

Effect of culture media and pH on the biomass production and biocontrol
efficacy of a Metschnikowia pulcherrima strain to be used as a
biofungicide for postharvest disease control. Canadian Journal of
Microbiology, 56 (2), 128-137. DOI: 10.1139/W09-117

The definitive version is available at:

[http://www.nrcresearchpress.com/toc/cjm/56/2]
Effect of culture media and pH on the biomass production and biocontrol efficacy of a *Metschnikowia pulcherrima* strain to be used as a biofungicide for postharvest disease control

Spadaro D.¹, Ciavarella A.², Dianpeng Z.², Garibaldi A.², Gullino M.L.²

¹DiVaPRA – Plant Pathology, University of Turin, Grugliasco (TO), Italy. ²Centre of Competence for the Innovation in the Agro-environmental Sector (AGROINNOVA), University of Turin, Grugliasco (TO), Italy.

Correspondence

Davide Spadaro, Di.Va.P.R.A. – Plant Pathology and AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Turin, Via L. da Vinci 44, I-10095 Grugliasco (TO), Italy.

E-mail: davide.spadaro@unito.it

Telephone: +39-011-6708942

Fax: +39-011-6709307
Abstract

Few strains of *Metschnikowia pulcherrima* are under development for control of postharvest pathogens on fruit. A substrate was developed to optimize the biomass production *M. pulcherrima* strain BIO126. Different complex nutrient sources, with or without pH control, were tested. Growth in Yeast Extract provided at concentrations equal to or higher than 30 g l$^{-1}$ resulted in the highest biomass. The addition of two carbon sources, D-Mannitol and L-Sorbose at 5 g l$^{-1}$ each, significantly improved the yeast growth. Initial pH values of the medium ranging from 5.0 to 7.5 permitted the highest growth of the yeast. A combination of Yeast Extract, D-Mannitol and L-Sorbose (YEMS), probably with diauxic utilization, showed synergistic effect, widening the exponential phase (the maximum specific growth rate was 0.45 h$^{-1}$), and increasing the final cell number (1.5×10^9 cells ml$^{-1}$) and dry biomass (6.0 g l$^{-1}$) in well controlled batch fermentation. In efficacy trials on ‘Golden Delicious’ apples, the microorganism grown in YEMS effectively reduced incidence and severity of *B. cinerea* (51.1% and 70.8%) and *P. expansum* (41.7% and 14.0%). Also on ‘Gala’ apples, the best reduction of grey and blue mould incidence was obtained with cells grown in YEMS (58.1% and 50.5%, respectively).

Keywords: batch fermentation, biological control, pH effect, postharvest, yeast.
1. Introduction

Several microorganisms have been evaluated to obtain microbial based products useful in agriculture, such as biofertilisers or biopesticides. Among the biofungicides, during the last twenty years, several yeast have been widely investigated against postharvest fungal pathogens of different host species (Janisiewicz and Korsten 2002; Spadaro and Gullino 2004; Wilson and Wisnieswki 1994).

Among the microorganisms under development, there are few strains of Metschnikowia pulcherrima antagonistic against fungi causing postharvest decay of fruit. Some strains are effective against Botrytis cinerea, Penicillium expansum, or Alternaria alternata of apples (Janisiewicz et al. 2001; Piano et al. 1997; Spadaro et al. 2002; 2008), other strains were selected against Penicillium digitatum on grapefruit, B. cinerea, Rhizopus stolonifer, and Aspergillus niger on table grape, or B. cinerea and R. stolonifer on cherry tomato (Schena et al. 2000). Epiphytic isolates reduced A. carbonarius and A. niger colonization on grapes (Bleve et al. 2006). Moreover, a strain of M. pulcherrima proved effective in preventing the growth or survival of food-borne human pathogens, such as Listeria monocytogenes or Salmonella enterica, on fresh-cut apple tissue (Leverentz et al. 2006). M. pulcherrima could act through competition for iron (Saravanakumar et al. 2008) or production of hydrolases, such as chitinases and glucanases (Saravanakumar et al. 2009).

The efficacy of many antagonists of wound pathogens is directly related to the number of antagonist propagules applied (Hofstein et al. 1994). Sinigaglia et al. (1998) found that the antagonistic effects of isolates of four yeast species, including M. pulcherrima, against Penicillium glabrum were more pronounced at high cell concentrations. Moreover, an increasing efficacy in reducing the germination of B. cinerea was
demonstrated by increasing the number of yeast cells applied (Spadaro et al. 2002). A simple way to increase the effectiveness of such biofungicides is the application of a higher number of cells. Mass production of yeast cells is an essential step in the commercialization of a biocontrol agent. A rapid, efficient and cheap mass production of yeast antagonists, generally by liquid fermentation, is one of the key issues to achieve the commercial use of the biofungicide (Wraight et al. 2001).

Due to the recent interest over the use of the yeast species *M. pulcherrima* as biocontrol agent, efforts must be intensified to produce *M. pulcherrima* in a laboratory scale fermenter to provide relevant information for the scale-up production. Operating conditions (aeration, agitation, pH and temperature) as well as medium constituents may affect the quality and quantity of the tested microorganisms. To increase the biomass production of an antagonistic yeast on a laboratory scale, the optimization of the growth conditions, using different complex nutrient sources, is essential. The culture media can greatly influence the efficacy of the biocontrol agents (Wraight et al. 2001). The aim of developing a substrate for laboratory purposes is to optimize the biomass production, to find optimal conditions for stabilization and formulation, and to develop a quality control system. To scale-up a laboratory fermentation process to an industrial level, it is fundamental to find cheap nutrient sources, generally industrial by-products, with nutritional values similar to the laboratory standardized media.

In this work, the influence of different complex nutrient media on the growth of *M. pulcherrima* strain BIO126 in 5 L batch fermentation was considered. The aim of the research was to find which sources provided the highest biomass production (as number of living cells and as dry biomass) of the antagonistic yeast and what was the optimal concentration for the identified sources. The experiments were carried out first in shake
flasks as a preliminary screening, and then in a 5-liter fermenter, optimizing aeration, temperature and pH. Finally, biological control assays were used to test the efficacy of the yeast cells produced through well controlled batch fermentation.

2. Materials and Methods

2.1. Microorganism

Metschnikowia pulcherrima (Pitt) M.W. Miller strain BIO126 was isolated from the carposphere of a ‘Golden Delicious’ apple harvested from an unsprayed orchard located in Piedmont, Northern Italy (Spadaro et al. 2002). The strain was stored as a cell suspension in 20% V/V glycerol at −80°C at the Microorganism Culture Collection of the Centre of Competence for the Innovation in the Agro-environmental Sector of the University of Torino (Italy). The strain was deposited within the American Type Culture Collection on June 19, 2007 with deposit designation PTA-8486.

2.2. Inoculum preparation

The yeast inoculum was prepared by subculturing in Yeast extract-Peptone-Dextrose (YPD) [10 g l⁻¹ granulated yeast extract (Merck, Darmstadt, Germany); 20 g l⁻¹ triptone-peptone of casein (Difco, Detroit, MI, USA); 20 g l⁻¹ D(+)‐glucose monohydrate (Merck)] on a rotary shaker (100 rpm) at 25°C for 48 h. Yeast cells were collected by centrifugation at 2500 x g for 7 minutes, washed, resuspended in sterilized Ringer solution (pH 6.9±0.1; Merck) and used as inoculum for the different liquid substrates evaluated in shake flask and batch fermentation experiments.

2.3. Shake flask experiments
Cell suspensions of *M. pulcherrima* strain BIO126 (3 ml; 5 x 10^8 cfu ml⁻¹) were inoculated in 1 litre Erlenmeyer flasks containing 300 ml of liquid media and grown on a rotary shaker (150 rpm) at 25°C for 48 h. Three flasks were prepared per each medium and two samples were collected from each flask. The final number of viable cells (cfu ml⁻¹) was determined by plating on NYDA (Nutrient broth-Yeast extract-Dextrose-Agar as in Droby et al., 1989): 10-fold dilutions of each suspension were prepared in sterilized Ringer solution (pH 6.9±0.1; Merck) and spread-plated in order to calculate the cell number. Plates were incubated at 25°C for 48 h and the number of colony forming units per millilitre (cfu ml⁻¹) was determined. The shake flask experiments were repeated two times.

2.4. Culture media

Complex nutrient media selection. The complex sources selected for the experiments were rich organic sources (yeast extract, nutrient broth, malt extract, meat peptone, casein peptone, bacto-peptone and casein hydrolyzed). Every source was tested at 10 g l⁻¹. The pH values were registered at the beginning of the experiment, after 24 and 48 h of culture. In a second experiment, the initial pH of the seven complex nutrient sources was adjusted to 7.00 ± 0.05, using a 1.0 M phosphate buffer (Na₂HPO₄ and NaH₂PO₄) solution, in order to evaluate the pH effect on the yeast growth. Every source was tested at 10 g l⁻¹. The pH values were registered after growth for 24 and 48 h.

Concentration of the complex nutrient source. Yeast extract medium was tested at different concentrations (5, 10, 15, 20, 30, 40, 50 and 60 g l⁻¹). The pH values were registered after growth for 48 h.
Initial pH. Yeast extract (30 g l\(^{-1}\)) was put in all the flasks. The pH of the media prepared was adjusted using either 0.1 N HCl or NaOH to obtain initial pH ranging from 1.0 to 11.0. The pH values were registered after growth for 24 and 48h.

Carbon source addition. In a first assay, the carbon sources were tested in a medium containing 30 g l\(^{-1}\) of yeast extract. Three monosaccharide sugars (D-Glucose, D-Fructose and L-Sorbose), two disaccharide sugars (Maltose and Sucrose, Sigma Chemical Co.) and two sugar alcohols (L-Sorbitol and D-Mannitol) were added to the yeast extract, at 10 and 20 g l\(^{-1}\). The pH values were registered after growth for 48h. In a second assay, D-Mannitol and L-Sorbose were tested either individually at different concentrations (from 2.5 g l\(^{-1}\) to 20 g l\(^{-1}\)) or mixed at concentrations of 5+5 g l\(^{-1}\) or 6+6 g l\(^{-1}\) in a medium containing 30 g l\(^{-1}\) of yeast extract. The pH values were registered after growth for 48h. The results of the two experiments were similar, so they could be analyzed together and combined (Table 3).

2.5. Fermentation experiments

Well-controlled fermentations of 4.0 L working volume (nominal volume, 5 L) were carried out in Applikon BioConsole ADI 1025 glass stirred tank vessels (AppliconTM Biotechnology, Schiedam, The Netherlands), integrated with the software Bioexpert Lite for data acquisition. Operating conditions included temperature controlled at 25±0.2\(^\circ\) C, dissolved oxygen permitted to float and monitored using a polarographic probe, agitation with two equally spaced Rushton impellers controlled at a constant speed of 450 rpm, and air sparging through a submerged ring sparger controlled at 4.0L/min or 1
vvm (volume of air per volume of medium).

The tested substrates were YE (Yeast Extract 30 g l⁻¹), YEM (Yeast Extract 30 g l⁻¹; D-Mannitol 10 g l⁻¹), YES (Yeast Extract 30 g l⁻¹; L-Sorbose 10 g l⁻¹) and YEMS (Yeast Extract 30 g l⁻¹; D-Mannitol 5 g l⁻¹; L-Sorbose 5 g l⁻¹). 0.05 ml/L of silicone antifoam (Sigma antifoam 204) were added. Every 2 h, starting from the inoculation of the fermenter to the end of the experiment, a 5 ml sample was harvested in order to measure the microorganism cell concentration. The concentration of viable cells (cfu ml⁻¹) was determined by serial dilutions and plating, as indicated in the shake flask experiments. The fermenter experiments were carried out twice. In order to know the dry biomass produced by fermentation, the dry weight was determined. After 36 h, the liquid cultures were collected and centrifuged (7500 rpm) at 4°C for 10 min (Beckman J21-2 centrifuge, Palo Alto, CA, USA) and the supernatant was discarded. The cell pellet was dried at 105°C for 30h and the dry mass was weighed.

2.6. Biocontrol assay

To evaluate the effect of the growth of M. pulcherrima strain BIO126 in four substrates (YE, YEM, YES and YEMS) on the biocontrol efficacy, four trials were carried out against Botrytis cinerea and Penicillium expansum on ‘Golden Delicious’ and ‘Gala’ apples. Yeast cells were grown in the four substrates for 36h, centrifuged and suspended to 10⁷ cfu ml⁻¹ in 100 l tanks. Five strains per each pathogen were isolated from rotted apples and selected for their virulence. Each strain was stored in slant on Potato Dextrose Agar (PDA; Merck) with 50 mg l⁻¹ streptomycin Merck at 4°C. Spore suspensions were prepared by growing the fungal pathogens on Petri dishes for two
weeks on PDA with 50 mg l\(^{-1}\) of streptomycin. Spores from the five strains were collected, suspended in sterile Ringer’s solution, filtered through 8 layers of sterile cheese-cloth and brought to a final concentration of \(10^5\) spores ml\(^{-1}\) per strain. Apples were artificially wounded at the equatorial region (3 mm diameter; 6 mm depth; 3 wounds per fruit). The fruits were artificially inoculated by dipping for 60 seconds in a 100 l tank containing a conidial suspension (\(10^5\) spores ml\(^{-1}\) per pathogen) of \textit{B. cinerea} or \textit{P. expansum}. After 3 hours, biocontrol isolates were applied at \(10^7\) cells ml\(^{-1}\) by completely dipping the boxes of fruits for 60 sec in a 100 l tank containing the yeast cell suspensions prepared as described. Fifty apples per replicate and three replicates per treatment were used. After incubation at 1\(^\circ\)C for 28 days, the incidence of rotten fruits and the lesion diameters were measured. A chemical control treatment consisted of fruits treated with thiabendazole (Tecto 20 S, Elf Atochem Agri Italy, 19.7 \% a.i., 20 g a.i. 100 l\(^{-1}\)). The experiment was carried out twice.

2.7. Statistical analysis

The fermentation experiments in bioreactor were performed twice, while the growth experiments in shake flasks and the biocontrol experiments were repeated twice. No significant differences were found among corresponding experiments so that the trials were pooled and statistical analysis was performed by using the SPSS software (SPSS Inc., version 13.0, Chicago, IL, USA). Statistical significance was generally judged at the level of P<0.05 for the shake flasks growth and biocontrol experiments, but at P<0.01 for the assay of concentration of the complex nutrient source. When the analysis of variance was statistically significant either in the shake flask growth or in the biocontrol experiments, Duncan’s multiple range test was used for the separation of
3. Results

3.1. Growth in complex nutrient media

Maximum exponential growth rate and biomass production of the strain BIO126 of *M. pulcherrima* varied with the complex nutrient source (Table 1a). The total nitrogen content of the tested media ranged from 8.0% to 15.4%, but it was very low for Malt Extract (1.1%). The highest yield was obtained with Yeast Extract (1.2×10^8 cfu ml$^{-1}$) and Nutrient Broth (8.5×10^7 cfu ml$^{-1}$), followed by Malt Extract and Meat Peptone. The Ringer solution, used as control, permitted to keep alive the initial inoculum.

Five out of seven complex nutrient sources, with an initial pH almost neutral, favoured the growth of *M. pulcherrima*, and the two substrates providing the highest biomass resulted in an increased pH value after 24 and 48 h from the inoculum. In the case of Malt Extract and Casein Hydrolyzed, the pH, initially acidic, decreased further at the end of the microorganism growth. For this reason, the experiment was repeated, adjusting the initial pH to 7.00 ± 0.05 with a phosphate buffer (Table 1b). Yeast Extract and Nutrient Broth confirmed the highest viable biomass. The pH values after 24 and 48 h were higher and slightly acidic when the microorganism was grown in buffered Malt Extract, but the final biomass obtained was lower. On the opposite, the viable cells obtained in buffered Casein Hydrolyzed were higher compared to the not buffered substrate, and the pH value after 48 h was basic (8.04).

An increase in initial Yeast Extract concentration from 5 to 30 g l$^{-1}$ gave a proportional increase in the biomass produced at the stationary phase (Fig.1). No significant increase
in biomass was observed from 40 to 60 g l\(^{-1}\) of Yeast Extract, which is likely due to the Crabtree effect (Crabtree 1928; Boulton et al. 1998). At the stationary phase, pH values of the culture substrate ranged from 8.07 to 8.70.

To assess the effect of the initial pH value on the final biomass produced, *M. pulcherrima* was grown in Yeast Extract (30 g l\(^{-1}\)) whose initial pH was adjusted at values ranging from 1.0 to 11.0 (Table 2). The pH values lower than 3.0 and higher than 10.0 did not permit the growth of *M. pulcherrima*. A growth of at least 10\(^8\) cfu ml\(^{-1}\) was possible at initial pH values ranging from 4.0 to 8.5. When the initial pH ranged between 5.0 and 7.5, a viable population higher than 3.0 \(\times\) 10\(^8\) cfu ml\(^{-1}\) was achieved and the final pH ranged between 8.05 and 8.34.

3.2. Effect of carbon addition

The effect of different carbon sources on the growth of *M. pulcherrima* was assessed in presence of Yeast Extract at two different concentrations: 10 and 20 g l\(^{-1}\) (Table 3). All the carbon sources tested increased the yeast biomass production when used at 10 g l\(^{-1}\).

At 20 g l\(^{-1}\) of carbon source, only D-Fructose did not provide a statistically significant increase in the biomass of *M. pulcherrima*. In general, 20 g l\(^{-1}\) of carbon source did not improve the yeast biomass compared to 10 g l\(^{-1}\) suggesting that high external carbon source concentration are not beneficial to growth of this yeast. Only D-Glucose, applied at 20 g l\(^{-1}\), provided a *M. pulcherrima* biomass higher than at 10 g l\(^{-1}\).

D-Mannitol and L-Sorbose at the concentration of 10 g l\(^{-1}\) provided the highest biomass, 1.5 \(\times\) 10\(^9\) cfu ml\(^{-1}\) and 8.0 \(\times\) 10\(^8\) cfu ml\(^{-1}\), respectively. Also Sucrose, either at 10 or 20 g l\(^{-1}\), was a good carbon source, resulting in 6.7 and 6.9 \(\times\) 10\(^8\) cfu ml\(^{-1}\) of *M. pulcherrima*, respectively.
The addition of different carbon sources resulted in a lower pH after 48 h. For D-Fructose, D-Mannitol, D-Sorbitol, and Sucrose, the pH was below 7.0 even after 48 h. D-Mannitol and L-Sorbose were used alone or combined at different concentrations in a second assay to evaluate the effect on the final growth of the yeast strain (Table 3). The maximum growth was obtained using 5.0 g l⁻¹ of D- Mannitol + 5.0 g l⁻¹ of L-Sorbose, that caused increase in the final number of cells to 1.7 x 10⁹ cfu ml⁻¹. At equal concentrations, D-Mannitol provided more yeast growth than L-Sorbose. In particular, the addition of 7.5 and 10.0 g l⁻¹ of D-Mannitol were the most effective concentrations resulting in a final cell number of 1.5 x 10⁹ cfu ml⁻¹. The highest growth with L-Sorbose was achieved at concentration of 12.5 g l⁻¹ (1.2 x 10⁹ cfu ml⁻¹). Addition of D-Mannitol and the mixture of D-Mannitol and L-Sorbose reduced pH after 48h growth. Increasing concentrations of D-Mannitol contributed to increase in the final pH value, while increasing concentrations of L-Sorbose had the opposite effect.

3.3. Fermentation experiments

The biomass production process was scaled-up from shaking flasks to a 5-l fermenter. The yeast biomass resulted significantly higher (1.6 x 10⁹ cfu ml⁻¹) in YEMS medium compared to simple YE, YE with L-Sorbose, or YE with D-Mannitol (Fig.2a). At 5 l min⁻¹ of aeration and 450 rpm, the stationary phase was achieved after 32 h of batch culture in YEMS medium, while in the other substrates it was reached from 2 to 4 h later. The maximum specific growth rate during the exponential phase was 0.45 h⁻¹ in YEMS, while it was 0.33 h⁻¹ in YES and 0.34 h⁻¹ in YE and YEM. Initial pH was 6.9 in YE and in YEM (Fig.2b). The presence of L-Sorbose contributed to lower the initial pH to 6.5 in YES and YEMS. As the growth approached the
stationary phase, pH tended to increase. The metabolism of D-Mannitol contributed to lower the pH of 0.4 units: the minimum value achieved was 6.40 for YEM and 6.03 for YEMS.

The consumption of oxygen is an indication of exponential growth (Fig. 2c). The reduction in the dissolved oxygen became visible when the viable population reached around 10^7 cfu ml$^{-1}$. In YE, the length of the exponential phase and the final number of cells obtained were reduced. In YES and YEM, the dissolved oxygen started to decrease earlier than in YE. In YE, moreover, even during the exponential phase, the dissolved oxygen was never reduced to 0%, but in YEMS it declined to 0% from the hour 24 to the hour 31, for the longest period, indicating a long exponential phase. The evolution of the dissolved oxygen indicated the sequential metabolism of D-Mannitol, followed by L-Sorbose and finally by the amino acids and proteins contained in Yeast Extract.

At the end of the fermentation experiments, 1000 ml of cultural broth were harvested, centrifuged and dried to measure the wet and the dry biomass produced. Using YE, YES, YEM and YEMS, the wet biomass was 11.1, 12.0, 19.8, and 26.4 g l$^{-1}$, respectively, and the dry biomass was 1.4, 2.1, 4.2, and 6.0 g l$^{-1}$, respectively. These results confirmed the values obtained by plate counting.

3.4. Efficacy trials

In the efficacy trials carried out on apples by treating with *M. pulcherrima* strain BIO126 grown on four substrates, yeast cells grown in YEMS were more effective. Generally, yeast concentrations being equal, the efficacy of the antagonistic cell suspension was influenced by the growth culture substrate (Fig. 3). On ‘Golden Delicious’ apples (Fig. 3a), grey mould incidence and severity on the fruits treated with
BIO126 grown on YEMS were 48.9% and 29.2% compared to the inoculated control (whose incidence and lesion diameter were 91.3% and 51.9 mm, respectively). Among the fruits treated with the four yeast cell suspensions, grey mould incidence was significantly lower when fruit were treated with cells grown in YEMS, but the mean lesion diameters observed were not significantly different. Considering the efficacy against *P. expansum* on ‘Golden Delicious’ apples, the cell suspension of *M. pulcherrima* BIO126 grown in YEMS reduced the incidence from 86.3% (inoculated control) to 50.3% and the mean lesion diameter from 37.9 mm (inoculated control) to 32.6 mm. On the opposite, when the yeast was grown in YE, it was ineffective in reducing blue mould severity compared to the control.

On ‘Gala’ apples (Fig. 3b), the grey mould incidence was significantly reduced by BIO126 grown on YEMS, YES, or YEM, but not when the yeast was grown on YE. The lesion diameter of grey rots was not significantly reduced by any yeast application. Similarly, against *Penicillium expansum* on ‘Gala’ apples, none of the biological treatments could significantly reduce the lesion diameter, but cell suspensions of the yeast grown in YES or YEMS significantly reduced blue mould incidence.

The fungicide thiabendazole reduced the incidence of grey mould and blue mould on both apple cultivars, but its efficacy in reducing the lesion diameter was higher against *B. cinerea* on ‘Golden Delicious’ apples, lower, although significant, against *P. expansum* on ‘Golden Delicious’ apples, and not significant against both pathogens on ‘Gala’ apples.

4. Discussion

The cell production is an essential step in the commercialization of a yeast with
industrial application as a biopesticide. To our knowledge, there are not studies that have addressed the production process of *M. pulcherrima*, considering the biomass viable count and the biocontrol efficacy as an objective function of the process. The growth parameters were initially optimized in flask experiments: the complex nutrient source that provided the maximum biomass of the antagonistic yeast *M. pulcherrima* was Yeast Extract. Although other sources tested (nutrient broth and the three peptones) contained higher nitrogen content, probably Yeast Extract possesses a more balanced equilibrium of amino acids and peptides (it contained 11.4% nitrogen), together with vitamins and carbohydrates, able to promote and sustain a rapid growth of a yeast microorganism (Peppler 1982; Perez et al. 1992). Moreover Yeast Extract shows a buffer ability (Gaudreau et al. 1997) and this could contribute to reach the highest viable cells concentration. The concentrations of Yeast Extract providing the highest growth were 30 g l⁻¹ or more. The trial carried out using the complex source media adjusted to pH 7.00 ± 0.05 allowed to determine the effect of the pH control on the biomass production by the strain BIO126. The buffering permitted to significantly improve the final yeast biomass obtained using Casein Hydrolyzed and Nutrient Broth, but it did not affect the result with the other complex source media. For this reason, the trials continued using Yeast Extract without phosphate buffer. A wide range of pH permitted the growth of *M. pulcherrima* (from 3.0 to 10.0), although initial pH values ranging from 5.0 to 7.5 provided the highest culture growth. Thus the subsequent trials were carried out measuring the initial pH values. The results obtained in flask experiments were confirmed in well-controlled batch fermentations. The higher viable cells count obtained in the top bench fermenter could
be linked to a better oxygenation as compared to the shake flasks. Maximum exponential growth rate, maximum culture density and maximum wet and dry biomasses were reached using YEMS medium. Moreover, the stationary phase was reached in YEMS from 2 to 4 h earlier than in the other substrates tested. Our results on *M. pulcherrima* are in accordance or higher than previously obtained results. Abadias et al. (2003) obtained 8×10^8 cfu ml$^{-1}$ of *Candida sake* after 30 h growth in a 5 l lab-scale fermenter. By growing *Rhodotorula minuta* in a shake flasks for 48 h, the best results in terms of viable microorganisms (over 10^9 cells ml$^{-1}$) were obtained with a PYD, a medium containing soluble potato starch, dextrose and yeast extract (Patiño-Vera et al. 2005).

In the fermentation experiments performed, L-Sorbose lowered the initial pH when it was added to YES and YEMS, and the metabolism of D-Mannitol contributed to lower the pH of the medium during the exponential growth phase. For this reason the combination of the two carbon sources, probably with diauxic utilization, showed a synergistic effect, improving the final yeast biomass over those obtained with the single carbohydrates, and lowering the pH up to 6.08 during the exponential phase. The sequential metabolism of D-Mannitol, followed by L-Sorbose, and finally by the amino acids and proteins contained in Yeast Extract, suggests that the growth response is diauxic, reflecting a sequential rather than simultaneous utilization of the carbon sources (Collier et al. 1996).

Actively growing yeast acidifies the growth medium through a differential ion uptake and direct secretion of organic acids and carbon dioxide (Walker 1998). An increase of the pH was related to the beginning of the stationary phase. During the experiments, when the microorganism was approaching the stationary phase of growth, the
respiration growth decreased, carbon dioxide production decreased and, consequently, pH tended to increase. An experiment was carried out in the top bench fermenter using YEMS as a substrate and with pH control kept at 6.00 (data not shown). The final cell concentration obtained was not significantly different from the experiment without pH buffering, as already shown in the shake flask experiments, so that pH control was not considered as an essential factor to increase the yeast biomass.

Oxygen consumption could be considered an indicator of exponential growth (Abadias et al. 2003). The dissolved oxygen rapidly decreased during the exponential phase because of cell respiration and, on the opposite, it started back to increase because of a decrease in the respiration rate of the cells (Meesters et al. 2003).

Cells were grown for 48 h in shake flask experiments and 40 h in well-controlled batch experiments, periods largely sufficient for the microorganism to reach the stationary phase of growth. Harvesting stationary phase cells is desirable to enhance cell survival under stress conditions such as low water potential or drying (Abadias et al. 2001). This could be an advantage as, after production, *M. pulcherrima* cells have to be formulated, probably, through a drying process, such as freeze drying (Melin et al. 2007) or fluid bed drying (Bayrock and Ingledew 1997). In both cases, yeast cells harvested at the stationary phase are more resistant to the osmotic stress caused by the drying process (Wraight et al. 2001). The efficacy trials conducted on two commercial varieties of apple permitted to test the influence of the growing media on the biocontrol capability of *M. pulcherrima* BIO126. The growth of both pathogens and the biocontrol efficacy of BIO126 were affected by the host cultivar. The two different cultivars chosen for the test, “Gala” and “Golden Delicious”, have different pH and titrable acidity, able to modify the growth and fitness of postharvest pathogens (Morales et al. 2008). On ‘Gala,
the incidence of fruits with grey or blue mould was lower than on ‘Golden Delicious’ apples. On ‘Golden Delicious’ apples, the microorganism cells grown in YEMS provided a higher reduction of incidence and severity of *B. cinerea* and *P. expansum*. Results were more promising against grey mould than blue mould, probably because *P. expansum* is growing at a faster rate. On ‘Gala’ apples, the best results on the reduction of the disease incidence were obtained with cells grown on YEMS or YES. Previous studies, carried out to test the influence of the growing media on the biocontrol efficacy of other antagonists, such as *Pantoea agglomerans*, did not show any statistically significant effect of the substrates (Costa et al. 2001).

As a chemical control, thiabendazole was used. Benzimidazoles can effectively control grey mould on apples, but they are almost ineffective against *P. expansum*, due to the high level of resistance developed by most of the Italian strains of this pathogen (Bertetti et al. 2003). To represent conditions more similar to the postharvest environment, both pathogen mixtures used in the efficacy trials were formed by four benzimidazole-sensitive isolates and one benzimidazole-resistant isolate. *Penicillium expansum* can cause economical losses due to blue mould, but also produces patulin, a mycotoxin often found in apple juices (Spadaro et al. 2007). For this reason, effective control strategies against blue mould are necessary, and strain BIO126 could constitute an effective alternative for blue mold control after harvest.

The results obtained were encouraging and a good substrate was developed for laboratory purposes (i.e. to find optimal conditions for biomass production, stabilization, formulation, and to develop a quality control system), but the following step will be the scaling up of the production process to the level of pilot plant and the subsequent stabilization and formulation. To scale-up a laboratory fermentation process
to an industrial level, it is fundamental to find nitrogen and carbon sources that provide maximum biomass production and minimum cost of media, whilst maintaining biocontrol efficacy (Mousdale et al. 1999). Yeast extract was the best complex nutritional source for BIO126 but it is expensive for an industrial process. The use of commercial by-products with the same nutritional qualities can result in a cheap alternative for the yeast biomass production (Ghribi et al. 2006). Anyway, often by-products are not standardized as purified products and they may contain impurities that need to be removed before fermentation (Stanbury et al., 1995). Moreover, their composition may vary according to season and origin. For these reasons, appropriate procedures should be employed to standardize the industrial growth media (Thomsen 2005). Commercial dry beer yeast could replace synthetic yeast extract, but it should be filtered before autoclaving, to discard the insoluble fraction (Reed and Nagodawithana 1991).

The knowledge gained about the addition of D-Mannitol and L-Sorbose will be useful to develop a cheap substrate containing a complex nutritional source similar to yeast extract together to the sugars selected in this study. After producing the biomass of the antagonistic yeast, the next step will be the cell stabilization by freeze-drying or fluid bed drying (Brian and Etzel 1997).

Acknowledgements

This research was carried out with a grant from the Piedmont Region for the project "Selection, study of the efficacy and of the mechanism of action, characterization and development of antagonistic yeast against post-harvest fruit pathogens". The authors gratefully acknowledge Dr. Pilar Bustos, Dr. Piergiuseppe Nestola and Ms. Incoronata Luongo for their help in the realization of the trials and Dr. Jeanne Griffin for her
linguistic advice. A special thank to the anonymous reviewers of the manuscript.

References

Table 1 Growth of *Metschnikowia pulcherrima* strain BIO126 (cfu ml\(^{-1}\)) in different complex nutrient media (10 g l\(^{-1}\) each), without (a, left) or with (b, right) adjustment of initial pH\(_{0}\) 7.00±0.05 with a phosphate buffer. Values of pH (±0.05) at initial time (pH\(_{0}\)), after 24h (pH\(_{24}\)) and 48h culture (pH\(_{48}\)) are shown. Cultures (5 x 10\(^5\) cfu ml\(^{-1}\)) were inoculated in 300 ml of liquid media and grown on a rotary shaker (150 rpm) at 25°C for 48 h.

<table>
<thead>
<tr>
<th>Total nitrogen content</th>
<th>Complex nutrient media (a)</th>
<th>Buffer ed complex nutrient media (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH(_{0})</td>
<td>pH(_{24})</td>
</tr>
<tr>
<td>Yeast Extract</td>
<td>11.4</td>
<td>7.13</td>
</tr>
<tr>
<td>Nutrient Broth</td>
<td>13.0</td>
<td>7.11</td>
</tr>
<tr>
<td>Malt Extract</td>
<td>1.1</td>
<td>5.17</td>
</tr>
<tr>
<td>Meat Peptone</td>
<td>13.9</td>
<td>7.36</td>
</tr>
<tr>
<td>Casein Peptone</td>
<td>13.5</td>
<td>7.04</td>
</tr>
<tr>
<td>Bacto-peptone</td>
<td>15.4</td>
<td>7.09</td>
</tr>
<tr>
<td>Casein Hydrolyzed</td>
<td>8.0</td>
<td>5.42</td>
</tr>
<tr>
<td>Ringer solution</td>
<td>--</td>
<td>6.35</td>
</tr>
</tbody>
</table>

* Values in the same column followed by the same letter are not statistically different by Duncan’s Multiple Range Test (P<0.05).
Table 2 Effect of the initial pH value on the growth of *Metschnikowia pulcherrima* strain BIO126 (inoculum: 5 x 10^5 cfu ml\(^{-1}\)) produced in liquid medium containing yeast extract (30 g l\(^{-1}\)) at 25°C for 48 h. Values of pH (±0.05) at initial time (pH\(_0\)), after 24 (pH\(_{24}\)) and 48h culture (pH\(_{48}\)) are shown.

<table>
<thead>
<tr>
<th>pH(_0)</th>
<th>pH(_{24})</th>
<th>Mean(_{24}) (cfu ml(^{-1}))</th>
<th>pH(_{48})</th>
<th>Mean(_{48}) (cfu ml(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.06</td>
<td>no living cells</td>
<td>0.94</td>
<td>no living cells</td>
</tr>
<tr>
<td>1.5</td>
<td>1.58</td>
<td>no living cells</td>
<td>1.42</td>
<td>no living cells</td>
</tr>
<tr>
<td>2.0</td>
<td>2.08</td>
<td>no living cells</td>
<td>1.95</td>
<td>no living cells</td>
</tr>
<tr>
<td>2.5</td>
<td>2.53</td>
<td>no living cells</td>
<td>2.45</td>
<td>no living cells</td>
</tr>
<tr>
<td>3.0</td>
<td>3.22</td>
<td>5.2 x 10(^5)</td>
<td>7.35</td>
<td>9.5 x 10(^6) b*</td>
</tr>
<tr>
<td>3.5</td>
<td>6.03</td>
<td>1.2 x 10(^6)</td>
<td>7.67</td>
<td>1.6 x 10(^7) b-c</td>
</tr>
<tr>
<td>4.0</td>
<td>7.72</td>
<td>1.2 x 10(^8)</td>
<td>7.32</td>
<td>2.6 x 10(^8) d-f</td>
</tr>
<tr>
<td>4.5</td>
<td>7.70</td>
<td>1.1 x 10(^8)</td>
<td>6.59</td>
<td>2.1 x 10(^8) d-e</td>
</tr>
<tr>
<td>5.0</td>
<td>8.02</td>
<td>1.3 x 10(^8)</td>
<td>8.12</td>
<td>4.9 x 10(^8) g</td>
</tr>
<tr>
<td>5.5</td>
<td>7.02</td>
<td>1.6 x 10(^8)</td>
<td>8.27</td>
<td>3.8 x 10(^8) f-g</td>
</tr>
<tr>
<td>6.0</td>
<td>6.80</td>
<td>1.5 x 10(^8)</td>
<td>8.16</td>
<td>3.7 x 10(^8) f-g</td>
</tr>
<tr>
<td>6.5</td>
<td>8.23</td>
<td>1.4 x 10(^8)</td>
<td>8.33</td>
<td>3.2 x 10(^8) e-g</td>
</tr>
<tr>
<td>7.0</td>
<td>7.98</td>
<td>7.3 x 10(^7)</td>
<td>8.34</td>
<td>3.1 x 10(^8) e-g</td>
</tr>
<tr>
<td>7.5</td>
<td>7.68</td>
<td>5.8 x 10(^7)</td>
<td>8.05</td>
<td>3.4 x 10(^8) e-g</td>
</tr>
<tr>
<td>8.0</td>
<td>7.91</td>
<td>5.5 x 10(^7)</td>
<td>6.70</td>
<td>2.2 x 10(^8) d-f</td>
</tr>
<tr>
<td>8.5</td>
<td>8.30</td>
<td>6.3 x 10(^7)</td>
<td>8.28</td>
<td>1.6 x 10(^8) d</td>
</tr>
<tr>
<td>9.0</td>
<td>7.05</td>
<td>3.3 x 10(^7)</td>
<td>7.62</td>
<td>3.6 x 10(^7) c</td>
</tr>
<tr>
<td>9.5</td>
<td>8.53</td>
<td>1.4 x 10(^7)</td>
<td>8.23</td>
<td>2.3 x 10(^7) b-c</td>
</tr>
<tr>
<td>10.0</td>
<td>8.86</td>
<td>3.9 x 10(^5)</td>
<td>8.90</td>
<td>1.5 x 10(^5) a</td>
</tr>
<tr>
<td>11.0</td>
<td>9.30</td>
<td>3.9 x 10(^5)</td>
<td>9.43</td>
<td>no living cells</td>
</tr>
</tbody>
</table>

* See Table 1.
Table 3 Growth of *Metschnikowia pulcherrima* strain BIO126 (cfu ml\(^{-1}\)) in media containing yeast extract (30 g l\(^{-1}\)) and different carbon sources. Cultures (5 x 10\(^5\) cfu ml\(^{-1}\)) were inoculated in 300 ml of liquid media and grown on a rotary shaker (150 rpm) at 25°C for 48 h. Values of pH (±0.05) at initial time (pH\(_0\)) and 48h culture (pH\(_{48}\)) are shown.

<table>
<thead>
<tr>
<th>Nitrogen source</th>
<th>Carbon source</th>
<th>pH (_{0\text{h}})</th>
<th>pH (_{48\text{h}})</th>
<th>Mean (_{48\text{h}}) (cfu ml(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast extract (30 g l(^{-1}))</td>
<td>D-Glucose</td>
<td>10 g l(^{-1})</td>
<td>6.88</td>
<td>7.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 g l(^{-1})</td>
<td>6.80</td>
<td>8.18</td>
</tr>
<tr>
<td></td>
<td>D-Fructose</td>
<td>10 g l(^{-1})</td>
<td>6.89</td>
<td>8.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 g l(^{-1})</td>
<td>6.90</td>
<td>6.78</td>
</tr>
<tr>
<td></td>
<td>Sucrose</td>
<td>10 g l(^{-1})</td>
<td>6.90</td>
<td>7.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 g l(^{-1})</td>
<td>6.89</td>
<td>6.85</td>
</tr>
<tr>
<td></td>
<td>Maltose</td>
<td>10 g l(^{-1})</td>
<td>6.89</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 g l(^{-1})</td>
<td>6.87</td>
<td>7.70</td>
</tr>
<tr>
<td></td>
<td>D-Sorbitol</td>
<td>10 g l(^{-1})</td>
<td>6.92</td>
<td>7.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 g l(^{-1})</td>
<td>6.90</td>
<td>6.94</td>
</tr>
<tr>
<td></td>
<td>D-Mannitol</td>
<td>2.5 g l(^{-1})</td>
<td>6.90</td>
<td>6.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 g l(^{-1})</td>
<td>6.92</td>
<td>6.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5 g l(^{-1})</td>
<td>6.92</td>
<td>6.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0 g l(^{-1})</td>
<td>6.90</td>
<td>6.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5 g l(^{-1})</td>
<td>6.90</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.0 g l(^{-1})</td>
<td>6.90</td>
<td>7.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.5 g l(^{-1})</td>
<td>6.91</td>
<td>7.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0 g l(^{-1})</td>
<td>6.91</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>L-Sorbose</td>
<td>2.5 g l(^{-1})</td>
<td>6.90</td>
<td>8.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 g l(^{-1})</td>
<td>6.90</td>
<td>8.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5 g l(^{-1})</td>
<td>6.91</td>
<td>8.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0 g l(^{-1})</td>
<td>6.89</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5 g l(^{-1})</td>
<td>6.90</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.0 g l(^{-1})</td>
<td>6.89</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.5 g l(^{-1})</td>
<td>6.90</td>
<td>7.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0 g l(^{-1})</td>
<td>6.90</td>
<td>7.95</td>
</tr>
<tr>
<td></td>
<td>D-Mannitol + L-Sorbose</td>
<td>5.0 g l(^{-1}) + 5.0 g l(^{-1})</td>
<td>6.97</td>
<td>6.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 g l(^{-1}) + 6.0 g l(^{-1})</td>
<td>6.93</td>
<td>7.23</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
<td></td>
<td>6.91</td>
</tr>
</tbody>
</table>

* See Table 1.
Fig. 1 Effect of the Yeast Extract concentration on the growth of *Metschnikowia pulcherrima* strain BIO126 (cfu ml$^{-1}$) produced in shake flasks at 25°C for 48 h. Values of pH after 48h culture are shown between parentheses.

![Graph showing the effect of Yeast Extract concentration on growth and pH](image-url)
Fig 2 (a) Evolution of biomass production (cfu ml$^{-1}$) of *Metschnikowia pulcherrima* strain BIO126, (b) pH and (c) dissolved oxygen using YE (Yeast Extract; ▲), YES (Yeast Extract + D-Sorbitol; x), YEM (Yeast Extract + L-Mannitol; ♦) and YEMS (Yeast Extract + D-Sorbitol + L-Mannitol; ■) media in a 5 l fermenter, maintaining temperature at 25°C, stirring at 450 rpm and oxygen flow at 5 l min$^{-1}$ for 40 h.
Fig 3 Influence of the cultivation substrate on the efficacy of *M. pulcherrima* strain 640 BIO126 (10^7 cfu ml^-1) against *Botrytis cinerea* (left) and *Penicillium expansum* (right)

on apples 'Golden Delicious' (*a*) and ‘Gala’ (*b*). Fruits were artificially inoculated with
the pathogen (10^5 conidia ml^-1) 3 hours before treatment with the biocontrol agent, and
then stored at 1°C for 28 days. Disease incidence was expressed as percentage of rotten
fruits and disease severity was assessed by measuring the lesion diameter of the rots
(mm). Thiabendazole was used as chemical control (Tecto 20 S, Elf Atochem Agri
Italy, 19.7 % a.i., 20 g a.i. 100 l^-1).

Values in columns of the same colour followed by the same letter are not statistically
different by Duncan’s Multiple Range Test (*P* < 0.05).