The section of Torre Picchio (Terni, Umbria, Central Italy): A Villafranchian site rich in Mammals, Molluscs, Ostracods and Plants

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/7548 since

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
THE SECTION OF TORRE PICCHIO (TERNI, UMBRIA, CENTRAL ITALY): A VILLAFAHRANCHE SITE RICH IN VERTEBRATES, MOLLUSCS, OSTRACODS AND PLANTS.

ODOARDO GIROTTO¹, LUCIA CAPASSO BARBATO¹, DANIELA ESU¹, ELSA GLIOZZI¹, TASSOS KOTSAKIS¹, EDOARDO MARTINETTO¹, CARMELO PETRONIO¹, RAFFAELE SARDELLA⁶ & ENRICO SQUAZZINI⁷

Received December 11, 2001; accepted November 18, 2002

Key-words: Vertebrates, Molluscs, Ostracods, Plants, Biochronology, Palaeoecology, Plio-Pleistocene, Central Italy.

Abstract. Fluvial deposits of the S. Maria di Ciciliano Formation crop out near Montecastrilli (Terni), in the southwestern branch of the Tiberino Basin. Many specimens of plants ("mummified" woods, fruits and seeds), freshwater molluscs, ostracods, vertebrate bones and coprolites were collected at Torre Picchio. This small outcrop contains a fairly rich record of fruits and seeds, among which about 50 species were identified; the most frequent invariably belong to submerged, floating and emergent aquatic herbs, possibly because these were buried not far from their place of growth, thus representing the ancient local vegetation. The fruits and seeds of woody plants, including several exotic elements, were transported from neighbouring areas and indicate a palaeoclimate similar to the present day, though slightly wetter. Among molluscs, three distinct assemblages were found, indicating fluvial, swampy and lacustrine environment, respectively. They contain taxa of biochronological interest, most of them typical of Early Pleistocene deposits (Late Villafranchian), but making their first appearance in the Late Pleistocene (Middle Villafranchian). One species, *Margaritifera (Pernodina) auricularia*, represents the oldest record everywhere, since it was known, so far, only from the Middle Pleistocene upwards. As palaeoenvironmental indicators, the ostracods complete the information given by molluscs. Vertebrates are represented by large and small mammals, rare birds, reptiles, amphibians and some fishes. A great number of coprolites was collected as well. The mammal assemblage shows affinities with the Costa S. Giacomo and Olivia Fm. (Middle and Late Villafranchian, Late Pleistocene). *Mimocycloides mediterraneus*, an Iberocccitan element, is signaled for the first time in Italy.

From the geological point of view, the S. Maria di Ciciliano Fm. is interfingering with the marine Chiani-Tevere Fm., which is mostly Santonian in age and lies unconformably on the Middle Pleistocene cycle. Only in some areas representing a structural low, the continuous transition between the lower portion of this unit and Late Pleistocene deposits may be observed before the heteropic episodes. This fact suggests some inconsistencies between chronostratigraphy and biochronology in the examined area because some taxa indicate a latest Pleistocene age. A heterochrony in the extinction of some species of plants and animals is suggested as a possible solution to the problem.

Riassunto. Nei pressi di Montecastrilli (Terni), nel ramo sudoccidentale del Bacino Tiberino, affiorano depositi fluviali della Formazione di S. Maria di Ciciliano. In località Torre Picchio ne è esposta una sezione di circa 3 m di spessore che, negli ultimi anni, è stata oggetto di uno studio palaeontologico sistematico. Nonostante la limitata estensione dell'affioramento è stato raccolto un gran numero di fossili: macroresti vegetali (legni, frutti e semi "mummificati"), molluschi continentali, ostracodi, ossa di vertebrati e moltissimi coproliti. I dati riguardanti i resti vegetali (frutti e semi) hanno consentito di identificare circa cinquanta specie di piante erbacee e arboree;

¹ Dipartimento di Scienze della Terra, Università degli Studi "La Sapienza", Piazzale A. Moro, 5 - 00185 Roma, Italy. e-mail: odoardo.girotti@uniroma1.it, CNR Istituto di Geologia Ambientale e Geoingegneria, Roma.
² Dipartimento di Scienze della Terra, Università degli Studi "La Sapienza", Piazzale A. Moro, 5 - 00185 Roma, Italy. e-mail: lucia.capasso53@yahoo.it.
³ Dipartimento di Scienze della Terra, Università degli Studi "La Sapienza", Piazzale A. Moro, 5 - 00185 Roma, Italy. e-mail: daniela.esu@uniroma1.it, CNR Istituto di Geologia Ambientale e Geoingegneria, Roma.
⁴ Dipartimento di Scienze della Terra, Università degli Studi "La Sapienza", Piazzale A. Moro, 5 - 00185 Roma, Italy. e-mail: girotti@uniroma1.it, CNR Istituto di Geologia Ambientale e Geoingegneria, Roma.
⁵ Dipartimento di Scienze della Terra, Università degli Studi "La Sapienza", Piazzale A. Moro, 5 - 00185 Roma, Italy. e-mail: carmele.petronio@uniroma1.it, CNR Istituto di Geologia Ambientale e Geoingegneria, Roma.
⁶ Dipartimento di Scienze della Terra, Università degli Studi "La Sapienza", Piazzale A. Moro, 5 - 00185 Roma, Italy. e-mail: raffaele.sardella@uniroma1.it, CNR Istituto di Geologia Ambientale e Geoingegneria, Roma.
⁷ Museo Paleontologico "Ex Chiesa di S. Tommaso", Vico Catinu, 24 - 05100 Terni, Italy.
fore the erasce resulting dominating the elofite and the macrofite aquatic, the rest are santo sepos in prosimicite the lu of cresca. The rest of the piante arboree, fra cui abbandono al elemento esot, are santo traspert da aree limitrofe al sito di deposizione and permettono di ricostruire un paleoclima tempere simile all attuale, ma leggermente pi umido. Le associazione macrofitoriche indicherebbero in linea di massima il Pliocene terminale ma pi abile anche un'eta Pleistocenie inferiore.

Fra i molluschi santo state rintraziti tre diverse associazioni di ambiente rispettivamente fluviale, di palude e lacustre. Esse contengono taxa di significato biocronologico, la maggior parte dei quali caratterizza depositi del Pleistocene inferiore (Villafranchiano superiore) pur avendo fatto la loro prima comparsa nel Pliocene superiore (Villafranchiano medio). Una specie, Marginiferas (Pseudana) aecialaria, rappresenta la citazione pi antica in assoluto, poiche era stata sinora rinvenuta solo a partire dal Pleistocene medio. Gli ostracodi suggeriscono condizioni ambientali che completano quelle fornite dai molluschi.

I vertebrati sonto rappresentati da ossa e coproliti. L'associazione a mammiferi presenta una composizione affine alle unità faunistiche di Costa S. Giacomo e Olivesi (Villafranchiano medio e superiore, Pliocene superiore). Il roditore Mimomys medasensis, segnato per la prima volta in Italia, indica la presenza di un elemento iberoce- tiano nell'associazione.

Spunti di discussione ed approfondimento sui rapporti fra eoceneologia e biocronologia nell'area in questione vengono suggeriti dal fatto che la Formazione di S. Maria di Ciciliano è etopoica a quella marina del Chian-Tevere; questa è prevalentemente santeriana ed discordante sul ciclo medio-pleistocenic, mentre soltanto in alcune zone di bau strutturale ed al di sotto della fascia di etopoia essa passa inferiormente con continuita al Pliocene superiore. D'altra parte alcune taxa sia di piante che di animali indicherebbero un'eta pleocene terminale. L'etopoetica nella scomparsa di alcune specie di piante e animali è suggerita come possibile soluzione del problema.

Foreword

The Tiberino Basin is the largest intramontane basin of the Apennine where non marine sedimentation took place from the Pliocene to the Holocene. The geology and paleontology of this basin have been investigated since the 18th century. Modern studies give an updated picture of the stratigraphy and paleontology of its southwestern branch, where the sedimentary successions widely crop out. The stratigraphy was described, among others, by Conti & Girotti (1978), Ambrosetti et al. (1989, 1995a, 1995b), Basilici (1995, 1997), Abbaazzi et al. (1997). The paleontology of molluscs, ostracods, vertebrates and plants was studied, among others, by Ambrosetti (1972), Esu & Girotti (1975), Ambrosetti et al. (1995a, 1995b), Ciangherotti et al. (1998), Esu et al. (1991, 2001), Pontini & Bertini (2000). These studies deal mainly with Pliocene and early Pleistocene deposits, among which three lithostratigraphic units are considered in this paper because of their important role in deciphering the chronological position of the faunas under study:

1. The Fosso Bianco Formation, a lacustrine unit, Middle Pliocene - Late Pliocene in age.
2. The S. Maria di Ciciliano Formation, which lies unconformably above the Fosso Bianco Formation. It consists of sediments deposited in a fluvial environment characterised by different facies: meandering channel deposits with trough cross stratification, lake and swamp deposits, and paleosoils. Based on the molluscs and mammals, this formation was referred to the Early Pleistocene.
3. The Chiani-Tevere Formation, a marine unit cropping out widely along the Middle Tiber Valley and interfingeriing laterally with the S. Maria di Ciciliano Formation. The Chiani-Tevere Formation is mostly Early Pleistocene, with only few sites of Gelasian age in the lowermost part of the stratigraphic column. The total thickness exceeds 300 m and it is heteropic with the S. Maria di Ciciliano Formation in the portion of Sanniterian age (Mancini et al. in prep.).

In the surroundings of the Montecastrilli village (Terni, Umbria, Central Italy), in the southwestern branch of the Tiberino Basin, fluvial and fluvo-lacustrine sediments referable to the S. Maria di Ciciliano Formation (Basilici 1995, 1997) widely crop out (Fig. 1). An excavation survey in cooperation with the Soprintendenza Archeologica per l'Umbria was started in 1996 at Torre Picchio, a site located 6 km from Montecastrilli. The excavations were carried out along a natural section which yielded some well preserved fossil bones. The fossils are stored, at present, in the Palaeontological Museum located in the former S. Tommaso Church in Terni, but the mollusc fauna which is kept in the coll. Esu-Girotti, Museum of Paleontology, University of Rome "La Sapienza" (M.P.U.R.-7).

The fossiliferous body is located on the northern side of a hill, at around 300 m a.s.l. and is exposed along a 3 m thick and 15 m wide section. It yielded a good number of micromammal and non-marine mollusc remains, several isolated elements of large mammal bones, fish teeth, fragments of amphibians, reptiles and birds; macrofloristic remains (woods, seeds and fruits) and coprolites were collected as well. Several species of ostracods, mainly found in clayey and peaty levels, were recognised.

All the fossil material, together with the sedimentology and the stratigraphy of the section, was studied in a multidisciplinary approach in order to collect data for paleoecological interpretations and, above all, to determine the age of the Torre Picchio fossiliferous site. As it will be shown later, the biochronological data of some mammals (indicating a Late Pliocene age) are in conflict with the chronostratigraphic position of the deposit, which is held as Early Pleistocene in age, because of the heteropic transition between the S. Maria di Ciciliano Formation and the Chiani-Tevere Formation. (NB. in the European nomenclature the term “heteropy” is referred to different facies or lithostratigraphic units, which are synchronous and adjacent; two formations are called “heteropy” when such conditions are documented: Bosellini & Rossi 1974).

Therefore, an interesting contribution to a possi-
ble reassessment of the biochronological framework at the Plio-Pleistocene transition is given.

O. Girotti depicted the stratigraphical framework and, in collaboration with D. Esu, studied the molluscs; E. Squazzini carried out the field work phases and the preparation of the fossils; E. Martinetto studied the palaeobotanical remains; E. Glozzi studied the ostracods and, together with L. Capasso Barbato and T. Kotsakis, the micromammals; T. Kotsakis studied also the amphibians and reptiles; C. Petronio and R. Sardella analysed the macromammal remains. The conclusions presented in this paper are the result of a collaborative work.

The Torre Picchio section

The Torre Picchio (TP) section consists of a little outcrop of sandy, clayey and silty sediments belonging to a body of a few hundreds cubic meters, which slide down from an escarpment along which the S. Maria di Ciciliano Formation is exposed. Without doubt the detached portion of sediments coincides with the in situ deposits and therefore the fossils of TP belong to the formation mentioned above. Detritus covers the in situ fossiliferous horizon and the fossil remains were unearthed only from the mentioned outcrop that collapsed for a few meters from its former position without disturbing its strata.

The lithological log of Fig. 2 illustrates the facies associations of the S. Maria di Ciciliano Formation as shown in the stratotype section (Basilici 1992). The Torre Picchio outcrop can be located on the upper part (at about 30 m) of this section, at the transition from the second sandy body to the paleosol.

The TP section is characterised (from bottom to top) by two meters of coarse sands followed at the top by one meter of silts and clays. The sandy body, ascribed to a meandering channel deposit, is yellow, cross-stratified, with levels or lenses of clayey pebbles, fine sand, silt and clay. Oxidised crusts and fossil wood stumps are common features. Above it, the first silty 35 cm are brownish in colour, showing evident root traces and thus are considered as a paleosol developed in a swampy environment; the last 70 cm consisting of grey clays are referable to a lacustrine environment.
The fossils remains were collected mainly from the coarse sandy body, i.e. almost all the vertebrates, the coprolites, few species of molluscs (very abundant), the ostracods, the wood, fruits and seeds. On the contrary, the upper fine sediments yielded extremely scarce vertebrates, a few ostracods and abundant molluscs and plant remains.

Plants

Three samples of muddy sand containing "mummified" plant macrofossils were collected in 1998 from different layers of the TP section to perform palaeocarpological analyses. The sediments were dried and later broken down by immersion in a solution of 5% hydrogen peroxide, which also permitted to concentrate the fruits and seeds through preferential flotation. The suspended material was sieved with a final mesh size of 0.3 mm, while a mesh size of 1.5 mm was adopted for the remaining residue.

All samples proved to contain a rather rich record of "mummified" fruits and seeds, even if the most frequent invariably belong to herbaceous aquatic macrophytes (Tab. 1), possibly because these were buried not far from their place of growth. These fossils likely represent the ancient local vegetation, that would have consisted of the submerged Ceratophyllum, Myriophyllum and Ranunculus cf. R. aquatilis, the water lilies Nuphar (Pl. 1, fig. 11) and Nymphaea, the small-sized floating fern Azolla and emergent herbs such as Alisma, Carex cf. C. pseudocyperus, Decodon, Oenanthe, Ranunculus sceleratus (Pl. 1, fig. 13), R. flammula, Scirpus cf. S. tabernaemontani. The ecological requirements of the species listed above point to standing or slowly flowing waters in eutrophic conditions.

Additionally, the TP sediment samples proved to contain a fairly rich assemblage of woody plant remains (Tab. 1), considering their rather small volume. These remains, mostly represented by fruits or seeds, were probably produced partly by the terrestrial vegetation standing around the deposition site, and partly by plants growing further away. Based on the ecological requirements and the abundance of their fruits/seeds, we may suggest that the following species formed a local riparian wood: Alnus sp., Pterocarya cf. P. limnoides, Liquidambar sp., Vitis cf. V. sylvestris and possibly also Ficus cf. F. carica, Ilex cf. I. prostrata and Zelkova sp. The remaining woody plants probably grew in mesic woods located upstream in the ancient river basin, so their fruits/seeds may have experienced a longer transport before being incorporated into the sediment. As a whole the rather diversified assemblage of arboreal plants points to a deciduous broad-leaved forest as the type of regional vegetation. The occurrence of three Picea needles in sample P10 requires particular attention, because this coniferous tree is mostly considered an element of altitudinal vegetation growing under cool-temperate climatic conditions (e.g. Bertoldi 1990; Pontini & Bertini 2000). The scarce number of these remains permits to formulate...
two hypotheses about their origin: 1) the Picea needles were transported from a higher vegetation belt, while the lower altitudes were covered by a deciduous broad-leaved forest; 2) Picea grew in the lower altitudinal belt, as an accessory element of the deciduous broad-leaved forest. The Late Pliocene record from northwestern Europe and northern Italy gives support to the second hypothesis, since it proves that spruces of Himalayan affinity (e.g. Picea florentiitii Van der Hammen) grew in the lowlands together with exotic Angiosperms such as Actinium, Eucomis, Magnolia, Menispermum, Phyllodendron, Pterocarya, Symphlocos sect. Palma, etc. (Van der Hammen 1951; Cavallo & Martinello in press).

Palaeobiogeography

Most of the genera and species identified so far in the TP site are rather common in the late Cenozoic of the Western European Palaeofloristic Region (Mai & Walther 1988), thus confirming its extension southwards to Umbria, as mentioned in Martinetto (2000). A few notable exceptions are represented by Fagaropsis sp. and Ficus cf. F. carica (Pl. 1, figs. 12a, b and 15). The first seems to be a new species, known only in central and northwestern Italy (where it was identified incorrectly as Myrtus palaeocommunis Friis: Mai 1995), with Miocene relatives in eastern France and southern Austria (Gregor 1984; Meller et al. 1999). The second taxon is known also in the Pliocene of northwestern Italy, and its relation with the living Mediterranean fig tree (F. carica) is not well assessed, since it could also be related to the eastern European fossil species F. europea Nigrri (1972). All of the fossil specimens need a detailed revision and a careful comparison with those of the modern F. carica. Additional elements not known in the rest of Europe may be represented by Nigella sp. and by three still unidentified species (Carpolithes spp.).

Palaeoclimatic significance

An analysis regarding the climatic tolerance of the nearest living relatives of the TP fossil plants suggests that they can only coexist in a mid-temperate climate. The absence of indicators of very warm-temperate climate (e.g. Cinnamomum, Symphlocos sect. Symphlocos) and the presence of Picea and Abies needles suggests to set the highest admissible limit of MAT (Mean Annual Temperature) around 13°C, and to focus the analysis on the lower value. For this purpose the occurrences of Viitis, Pyracantha, Pterocarya, Liriodendron, Liquidambar, Hex and Ficus are particularly useful, since these genera mostly grow wild where the MAT is higher than 11°C. Therefore the ancient MAT was likely around 12±1°C, i.e. close to modern temperatures in the same region.

A group of mesic taxa, that require high soil moisture (Liriodendron, Magnolia, Taxus) in the growing season, indicates that precipitation was higher than at present and there was no marked summer drought, as further confirmed by the absence of Mediterranean xerophytes.

These climatic conditions can be inserted in a broader climatic trend that is going to be reconstructed in central Italy on the basis of pollen diagrams (Pontini & Bertini 2000) and plant macrofossil data. In fact, in the Umbria region itself, some rich fossil sites with rich macrofloras, which are surely older than TP, are known in the Fossio Bianco and Ponte Naja formations (Martinetto, unpubl. data), assigned to the Middle-Late and Late Pliocene, respectively. All these floras indicate warmer conditions in comparison with TP, since they
include such thermophile evergreen elements as Eurya, Symplocos sect. Symplocos and Todalia. Another rather rich fruit and seed flora was sampled in the Santa Maria di Ciciliano Formation at Villa San Faustino, in a succession assigned to the early Pleistocene by Ambrosetti et al. (1995a). This last flora is particularly rich in conifers and seems to represent a moderately cool-temperate phase, when the slopes of the Tiberino Basin where probably covered by mixed coniferous and deciduous broad-leaved forest.

Biochronological notes

The TP carpological taxa mostly show a long stratigraphic range in Europe. However the attention has to be focused on a few taxa that may contribute to the definition of the time interval in which the age of TP could fall. First of all, Lobelia pliocenica is presently known only for the Pliocene of Russia and northern Germany; secondly, Selaginella magdalenii, Boeberia, Liquidambar and Liriodendron guminata disappear from central Europe, and seemingly also from northern Italy, at the end of the Pliocene. Also Magnolia cor is thought to disappear from transalpine Europe at the end of the Pliocene, but in northern Italy its range extends to the Early Pleistocene (Martinetto 1999). On the other hand, Oenanthe aquatica, O. cf. O. lacenii, Carex cf. C. pseudocyperus and Azolla filiculoides are young elements in the Neogene floras, which make their first appearance in the Pliocene, and in the case of A. filiculoides even in the latest Pliocene. Other interesting occurrences are those of several extinct or exotic taxa, i.e. ?Peganopsis sp., Ilex cf. I. protogea, Melissa elegans, Decodon cf. D. gibbosus, Pterocarya cf. P. limburgergis, Zelkova sp.; their abundance indicates a floras context markedly different from that found in the study area today, a feature usually diagnostic of floras which predate the middle Pleistocene. In conclusion, the fruit and seed assemblage gives more indications of a late Pliocene age. However, an Early Pleistocene age would not be surprising for two reasons: 1) recent studies showed that the time of extinction of several species does not coincide in northern-central Italy and in transalpine Europe (Martinetto 1999); 2) just a few sites provided fairly rich fruit and seed flora in peninsular Italy, so that an accurate local biochronological scheme for this type of fossil floras is not available at present. The comparison with pollen data is certainly useful, but not conclusive because of the many taphonomically induced differences in the micro- and macrofossil record of terrestrial plants.

Molluscs

The fossiliferous sediments yielded several species of non-marine molluscs belonging to aquatic and terrestrial gastropods and large bivalves.

Three distinct assemblages were found in the lower sandy layer, in the following swampy palaeosol and in the uppermost lacustrine clays, respectively. First, the fauna was examined from a palaeoecological point of view. For this purpose the results of previous works about non marine extinct and extant taxa of the Tiberino Basin (Ambrosetti et al. 1995a; Ciangerotti et al. 1995) were used. These are based on the qualitative and quantitative method adopted for Quaternary European assemblages by different authors, including Lozek (1964) and Puisségur (1976). Then, remarks on the extinct species or species no longer living in Central Italy are presented and the palaeobiogeography and palaeoecology of the recorded species is addressed.

Palaeoecological aspects

The following molluscs are recorded from the sandy level:

- Melanopsis affinis Féruissac
- Parmacella (Parmacella) sp.
- Eobancus vermicularia vermicularia (Michelotti), Margaritifera (Pseudunio) auricularia (Spengler), Corbicula fluminalis (Müller).

The lithofacies (coarse sand) of this assemblage likely reflects a fluvial environment, supported in particular by the bivalves M. auricularia and C. fluminalis, which colonize large rivers even today. The genus Melanopsis is adapted to running waters too; the other two gastropod species are terrestrial pulmonates that likely lived near the riverbank in bushy surroundings.

The following molluscs are recorded from the silty pedogenic level:

- Valvata (Cinccina) piscinalis (Müller),
- Valvata (Valvata) cristata Müller,
- Belgrandia sp.,
- Prosobranchia sp.,
- Bibbyina leachi (Sheppard) with many opercula,
- Bibbyina tentaculata (Linnaeus),
- Micromelania (Goniobulbus) zitteli (Schwartz von Mohrenstern),
- Emmericia umbra De Stefani,
- Lymnaea stagnalis (Müller),
- Planorbis planorbis (Linnaeus),
- Helicidae indet.,
- Anodonta sp.
- Corbicula fluminalis (Müller),
- Pissidium sp.

This is an assemblage of freshwater prosobranchs, pulmonates and bivalves characterising a marshy to swampy environment, with influxes of slow running waters. Most of the species listed require a vegetated bottom. M. (G.) zitteli, E. umbra and C. fluminalis, which require more oxygenated waters, are extremely scarce and probably not autochthonous. The abundance of plant remains in the sediments confirms the palaeoecology of the assemblage.
From the uppermost clays the following taxa were identified:

Valvata piscinalis,

Bithynia leachi with numerous opercula.

A lacustrine environment is suitable for these species.

Remarks on extinct species or species no longer living in Central Italy.

M. (G.) zitteli is an extinct species with eastern affinities and of ipo-oligohaline environment. In Italy it is typical of the Tiberino basin from Late Pliocene to Early Pleistocene and there are no records outside this basin (Esu & Girotti 1975; Ambrosetti et al. 1995b).

E. umbra is a widespread species from Central Italy, ranging from Messinian to Early Pleistocene, in intramontane basins of Tuscany, Umbria and Latium (Esu et al. 2001). Living species of Emmericia prefer clear and well-oxygenated waters rich in calcium carbonate such as springs and rivers.

M. affinis appears since the middle Villafranchian, together with a few other species (Ciangherotti et al. 1998) that become very abundant in upper Villafranchian deposits. To date this fossil species is known to be found exclusively in Central Italy. Living species of Melanopsis prefer warm waters up to thermal temperatures; they are widespread in southernmost Europe, North Africa and Near East (Esu & Girotti 1975).

P. (Parmacella) sp. is a terrestrial pulmonate no longer living in Italy, where it is known as a very rare fossil from the Late Pliocene to Early Pleistocene of Central Italy (Tuscany, Umbria) (Manganelli & Giusti 1993; Zanchetta 1995; Ciangherotti & Esu 2000). Recently it was recorded in the S. Maria di Ciciliano Formation from Monticelli (Umbria) (personal unpubl. data). At present it is widespread in warmer areas of the Mediterranean basin.

E. v. vermiculata (Pl. 2, fig. 3) is well known in literature but it was illustrated only by Sacco (1897). It is recorded from the Middle Pliocene of Piedmont (Sacco, 1884, 1897; Wenz 1923-30) and the early Pleistocene of Sabina (Latium) (Tuccimei 1889; Wenz 1923-30; Esu et al. 1993). We collected also some specimens from the Upper Pliocene deposits of the Ponte Naja Formation near Todi, Umbria. Additional specimens, which were collected in 1869 by G. Bellucci near Martinello (Perugia, Umbria), are kept in the collections of the Archaeological Museum of Perugia. Up to now this species were not found in younger deposits.

C. flaminata (Pl. 2, fig.7), ranging from the Pliocene upwards, is a cosmopolitan species of the Palaeoarctic domain still living outside Europe in large rivers and lakes; extinct in Italy after the middle Pleistocene (Giozzi et al. 1997), it is well represented in the Plio-Pleistocene of the Tiberino basin, mainly in fluvialite sediments but also in lacustrine deposits (Esu & Girotti 1975). Recently it was recorded in Plio-Pleistocene sediments of Lower Valdarno (Caredio et al. 1995) and Middle Pliocene deposits of Val d’Elsa (Benvenuti pers. com.).

M. (P.) auriculata (Pl. 2, fig.1-2) is a fluvial species still living outside of Central Italy in the Po River and in Spanish, French and North-West African rivers (Fechter & Falkner 1990; Gittenberger et al. 1998). In the Quaternary it is recorded in Italy from middle and upper Pleistocene alluvial deposits of the Tiber Valley (Maiolasc et al. 1964). Its presence at TP represents the oldest known record for M. (P.) auriculata, whereas the youngest fossil specimens come from various Holocene sites in northern Europe.

Chronostratigraphic position

Among the bivalves, the presence of M. auriculata is of special interest, because it was never found in deposits older than middle Pleistocene: TP is so far the oldest record for this species. C. flaminata ranges from Middle Pliocene to Early Pleistocene in the Villafranchian basins of Central Italy, where it is associated with the extinct gastropods M. (G.) zitteli, E. umbra, M. affinis, P. (Parmacella), E. v. vermiculata. Among these gastropods none survive beyond the Early Pleistocene and each is present in Pleistocene deposits, where they are widespread. Moreover, M. zitteli and M. affinis make their first appearance in Central Italy in Late Pliocene sediments (Ambrosetti et al. 1995b; Giozzi et al. 1997; Ciangherotti et al. 1998): in fact, these species occur also in the upper part (Late Pliocene) of the Fosso Bianco Formation and in the Dunarobba fossil forest area (Ambrosetti et al. 1995b), where they are associated with terrestrial pulmonates that became extinct at the end of the Pliocene. Therefore, a latest Pliocene or earliest Pleistocene age can be suggested for the mollusc fauna from the Torre Picchio section.

Ostracods

The TP section was investigated in detail for ostracod analyses by means of 11 samples collected every 25 cm. The following six ostracod species were found: Cyprideis torosa (Jones), Hyocypris gibba (Ramdohr), Candona neglecta Sars, Fabaeformiscandona levanderi (Hirschmann), Fabaeformiscandona fabaeformis (Fischer) and scarce instars of Pseudocandona sp.

F. fabaeformis and F. levanderi are signaled for the first time in the Tiberino basin, but are already known in central Italy from the upper Pliocene-lower Pleistocene deposits of the Rieti basin (Barberi et al. 1998). All the other species were collected previously from the Santa Maria di Ciciliano Formation of the Tiberino basin (Di Napoli Alliata 1962; Ambrosetti et al. 1989).

Each species collected shows low to very low frequencies, but is represented generally by both adults and
Section of Torre Picchio

Fig. 1 - *Azolla filiculoides* Lam. Megaspores: upper-oblique view. Fig. 2 - *Azolla filiculoides* Lam. Megaspores: lateral view. Fig. 3 - *Selaginella magdae* Knobloch: megaspore. Fig. 4 - *Illex* cf. *I. protoge* Mai: seed in ventral view. Fig. 5 - *Ceratophyllum* sp.: fruit in lateral view. Fig. 6 - *Pterocarya* cf. *P. limbargensis* Reid & Reid: fruit in lateral view. Fig. 7 - *Melissa elegans* Reid: fruit in ventral view. Fig. 8, 9 - *Deodora* cf. *D. gibbosus* (Reid) Nikitin: 8) fruit in lateral-ventral view with incipient dehiscence along the apical margin; 9) fruit in lateral view. Fig. 10 - *Liriodendron ginnustia* Kirchheimer: couple of seeds. Fig. 11 - *Nuphar* cf. *N. canaliculatum* Reid & Reid: seed in apical view. Fig. 12a, b - *Ficus* cf. *F. carica* L.: endocarp in lateral view and detail of its external surface. Fig. 13 - *Ranunculus sceptratus* L.: fruit in lateral view. Fig. 14 - *Pyxesthins* sp.: endocarp in lateral view. Fig. 15 - *Pagropsetis* sp.: seed in lateral view. Fig. 16, 17 - *Beokmenia* sp.: achenes in lateral view, respectively with scanty remains of the wing and with complete wing. Fig. 18 - *Scirpus tabernaemontani* Gmelin: achene in lateral view.

Plate 1

Figs. 1 - 2a, b - *Margaritifera* (Pseudonitrio) *auricularia* (Spengler), from the sandy level. Fig. 1, M.P.U.R.-7- 1479/1; x 0.8. Fig. 2a, b, M.P.U.R.-7- 1481/1; x 0.8. Fig. 3a, b, c - *Eobanca vermicularia* vermicularia (Michelotti), from the sandy level. M.P.U.R.-7- 1480/1; x 0.9. Fig. 4 - *Anodontia* sp., from the silty pedogenic level. M.P.U.R.-7- 1482/1; x 1. Fig. 5 - Freshwater mollusc assemblage from the silty pedogenic level. Fragmentary little gastropod shells, Planorbids and bivalves are visible. M.P.U.R.-7- 1483/1; x 0.9. Fig. 6 - *Planorbis planorbis* (Linnaeus), from the silty pedogenic level. M.P.U.R.-7- 1484/1; x 1. Fig. 7 - *Corbicula fluminalis* (Müller), from the sandy level. M.P.U.R.-7- 1485/1; x 2.25. All the material is kept in the coll. Esu-Girotti, Museum of Paleontology, University of Rome "La Sapienza" (M.P.U.R.-7).
last instars, indicating only a moderate displacement (Whatley 1988). Moreover, these species are not homogeneously distributed in all samples.

At the base of the TP section, both coarse (TP11a) and finest muddy sands (sample TP11b) were sampled: the first are barren of ostracods, while in the latter a poor ostracod assemblage is represented by scarce valves of *F. fabaeformis*, *C. neglecta* (juveniles) and *Pseudocandona* sp. (juveniles). They are all freshwater taxa typical of shallow permanent or temporary aquatic environments, which tolerate also low salinities (oligohaline).

In the middle sandy and coarser portion of the succession, samples TP 10-TP6 are barren of ostracods and record only the presence of displaced *Bithynia* opercula and some pharyngeal fish teeth. In this portion the samples are very rich in vegetal remains (wood, seeds).

Sample TP5, taken upwards in grey clays, records only the presence of *C. torosa* characterised by noded adult valves. This species is a very euryhaline temporary and permanent water dweller. Many studies have addressed its capability to show eco-phenotypical morphs linked to the salinity variations. In particular, according to Carbonel (1988) and Van Harten (1996) noded specimens occur when salinity decreases below 8‰ and the environment is characterised by the sedimentation of terrigenous deposits. Recently, Van Harten (2000) suggested that noding could be induced also by other factors, such as pH and CO₂ content. On the contrary, according to Kruit (1955), noding could develop also in hyperhaline environments. Even if *C. torosa* is present in sample TP5 with a very low frequency, this species indicates a permanent or temporary saline water body. Due to its morphology, it is not possible to define if the TP waters were oligo- or hyperhaline. However, the comparison with the ostracod assemblages collected in the nearby Villa S. Faustino section, still part of the Santa Maria di Ciciliano Formation (Ambrosetti et al. 1995a) points to an oligohaline environment.

Towards the top of the TP section, the clayey samples TP4-TP3 are again barren of ostracods and very rich in lignite (maybe the environmental conditions were too acid for ostracods), while the muddy and peaty samples TP2-TP1 are characterised by abundant, but olistotypical ostracod assemblages made by *C. neglecta* (dominant), *F. levanderi* and *I. gibba*. This assemblage records the restoration of a shallow, permanent or temporary, freshwater body.

Vertebrates

Vertebrates are represented by large and small mammals, rare birds, reptiles, amphibians and some fishes.

The following taxa were found:

Amphibians

Anura indet. A distal half of a large tibia-fibula belonging to an anuran of the size of a toad is the only fragment collected in TP. Any classification, even at family level, is impossible.

Reptiles

All the reptile remains collected at TP belong to turtles.

- *Emys orbicularis*. One fragmentary nuchal, two neurals, one suprapygal, several costals (fragmentary), many peripherals, three epiplastra (one fragmentary), one entoplastron, four big fragments of hypoplastra, one fragment of hypoplastron and three xiphiplastron belonging to the common European pond turtle, *Emys orbicularis*. This species is characterised by a weakly developed epiplastral tubercle, the presence of a gentle xiphiplastral notch and a smooth and slightly grooved hinge line between the hypoplastra and hypoplastra. The peripherals, unlike in the genus *Mauremys*, are interested by deep grooves of the dermal shield (boundary of supra-marginal and marginal scutes). All these characters are present in the fossils. Some bones indicate the presence of specimens that are almost as large as the largest living individuals (about 35 to 40 cm long).

Remains of this emydid are very common in Europe until the Pliocene (Mylanski 1980). In Italy it is present also in sediments of the Upper Valdarno (Tuscany) (Kotsakis 1980) now ascribed to the Late Pliocene. In the Tiberino basin abundant fossils of this species were collected in the Pietrafitta lignite quarry (Farneta F.U.) (Kotsakis & Gregori 1985). *E. orbicularis* is very common today in the Italian Peninsula and in the larger islands; it occurs usually in permanent low-energy freshwater environments with abundant aquatic vegetation (Hollman 1998).

Mauremys sp. A left xiphiplastron with a deep xiphiplastral notch and the groove between the femoral and anal shields almost parallel to the anterior border of the xiphiplastron indicates the presence of a member of the genus *Mauremys*, the striped neck terrapins.

The genus *Mauremys* is present in the Pliocene deposits of Upper Valdarno with *Mauremys gaudryi* etr-
The nonictis *Enhydrictis* is Italian Villafranchian (Rook form) middle Villafranchian referred (Napoieone & Larger and shows pitridae. The Campana fall montdnus is referable to Torre (Kotsakis et al. (1983) considered the first occurrence of *C. etruscus* in Italy as one of the biological events which characterised the faunal renewal of the late Villafranchian (the wolf event). In recent times, Rook & Torre (1996) referred to *Canis* cf. *C. etruscus* some fossils from the middle Villafranchian fauna of Costa S. Giacomo, while a very similar canid occurs in the almost coeval deposit of Senéze (France).

The first occurrence of *C. arnensis* seems to be at Poggio Rosso (Upper Valdarno), in a fauna with transitional features between Olivola and Tasso F.U.'s (Napolone et al. 2001). This taxon survives until the Farneta F.U., while *Canis* aff. *C. arnensis* (advanced form) is still occurring in the Galerian faunas (Rook & Torre 1996; Gliozzi et al. 1997).

Baranogale sp. The occurrence of a mustelid is indicated by a lower carnassial and a second phalanx. Unfortunately the crown of M1 is heavily worn out and no morphological considerations are allowed. The size of the tooth is intermediate between the range of the Italian Villafranchian species referable to the larger *Pannonictis nestii* (Martelli) (Olivola-Farneta F.U.) and *Enhydrictis ardea* (Bravard) (early-late Villafranchian) (Rook 1995; Gliozzi et al. 1997), and the smaller European zorillas *Vormela* and *Baranogale* (Spassov 2001). The specimen from TP can be compared in size to *Baranogale* cf. *B. kellbergi* Kormos from the middle Villafranchian Greek locality of Dafero (Koufos & Kostopoulos 1997), but only new findings will allow further detailed taxonomical considerations.

Homotherium sp. The occurrence of a large felid is recorded by a first phalanx, with evidences of fluvial transport. The curved diaphysis is typical of the felids and its large size is more indicative of the sabretoothed cat *Homotherium* rather than *Panthera*. The earliest occurrence of *Homotherium* in Italy is recorded at Pieve Fosciana (Tuscany), in a faunal assemblage referable to the Trivessa F.U.; this sabretoothed cat is a quite common element of the late Villafranchian faunas and disappears in the Middle Pleistocene (Sardella 1994).

Mammuthus meridionalis. Some fragmentary enamels of molars belong to an Elephasidae. The thickness and morphology of the teeth fragments seem to fit those of the genus *Mammuthus*, but the remains are too scanty to allow a sure taxonomic classification.

Equus cf. *E. stenonis*. The occurrence of stenoniod horses is testified by some fragmentary cheek-teeth with short and asymmetric protocones (Fig. 3 g) and fragmentary bones.

Stephanorhinus cf. *S. etruscus*. The etruscan rhino is represented by a mandible of a juvenile specimen and a third metatarsal (Fig. 4 c, d). The teeth are brachyodont and the horizontal branch of the mandible is short. Even if we take into account the young age of the specimen, it is similar in shape to the specimen from Capitone (TR) (Ambrosetti 1972). The third metatarsal is very long and slight and shows total length-transversal diameters indexes that fit well with the biometrical parameters of *Stephanorhinus etruscus* (cf. Fortelius et al. 1993). This species is recorded in Italy in the middle and late Villafranchian (Gliozzi et al. 1997).

Sus strozzii. This suid is represented by fragmentary remains. The most significant element (Fig. 3 h) is a complete M1, showing a bunodonty and a strong thickness of the enamel typical of the species (Azzaroli 1955). Also the biometrical parameters fit well with those of *Sus strozzii* specimens from Upper Valdarno.

Eucladoceros dicranios vel etenoïdes. Remains of a large cervid referable to the genus *Eucladoceros* were collected. Some fragmentary molars, a calcaneum (Fig. 3 f) and an astragalus show dimensions and morphology similar to those of the species *Eucladoceros etenoïdes* and *E. dicranios*. The absence of the antlers does not allow a more defined taxonomical classification. Both species are typical of the late Villafranchian faunas of Italy (Olivola and Tasso F.U.) (Gliozzi et al. 1997).

Axis nestii. This species, recently revised by Di Stefano & Petronio (1998, in press), is the best represented at TP (Fig. 3 a, b, c, d). The morphological and biometrical features of the collected bones fall in the intraspecific variability range of this taxon (Di Stefano & Petronio 1998). In particular, some basal parts of the antlers were recorded. They show the first time lightly
distanced by the rosetta and oriented with an acute angle, as in the other specimens of *Axis nestii* (Di Stefano & Petronio 1998).

Premolars and molars show a less derived morphology in comparison with *Axis eurygonos* (Azzaroli), which characterises the Farneta F.U. and is still present in the Galerian faunas. Also the size and morphology of the postcranial bones can be considered for the taxonomical definition. The TP specimens have radius and metatarsals with proportions (total length-transversal length) similar to those of *A. nestii* specimens considered by Di Stefano & Petronio (1998), substantially differing from the "rusoid" European forms.

Cervidae gen. et sp. indet. Several fragmentary bones can be generically referred to this family.

Leptobos cf. L. etruscus. This bovid is represented by a great number of bones. Following Masini (1988), the morphology of the skull and the shape of the horn cores are very important features in the taxonomy of leptobovines. These skeleton parts are missing in the TP samples and, taking into account also the marked intraspecific variability and the marked sexual dimorphism, the biometrical data of the limb bones (Fig. 4 a, b) have to be considered with caution.

The specimens from TP show some affinities with the late Villafranchian *Leptobos etruscus* (i.e. the shape of the molars and metapodials); the taxonomical attribution is suggested by the analysis of the scattergram diagrams for metatarsal bones (Fig. 5), (maximum length/transversal distal diameter). This bovid characterised the Olivola and Tasso F.U.

Bovidae gen. et sp. indet. (medium sized, ?*Gallogoral*). A third phalanx (Fig. 3, e) shows morphological features referable to those of Bovidae sensu lato. It is slender, antero-posteriorly shortened, with a plantar surface similar in shape to those of bovids. The occurrence of medium sized antelopes (i.e. *Procamptoceras*, *Gazellospira*) characterised the Late Pliocene faunas (Guerin 1965). The last occurrence of these taxa is recorded in the Olivola F.U. (Gliozzi et al. 1997).

Bovidae gen. et sp. indet. The taxonomical attribution of several fragmentary bones is impossible in this group.

Castor sp. A single right *M* (7.60 x 8.11 mm) and a small phalanx belong to the genus *Castor*. The molar crests are almost unfolded while the striae are relatively long. The first character is present in the living *Castor fiber Linnaeus* whilst the second is more common in the Villafranchian beavers (Kretzoi 1977) but the material is very scanty and we prefer a classification at generic level. The genus *Castor* is common in mammal Villafranchian assemblages of Italy.
Mimomys medasensis (Fig. 6 a). All rodent remains collected at this site belong to a single species, a big arvicolid of the genus Mimomys (see Appendix). The dimensions of M3 (3.16-3.80 mm) correspond to species like Mimomys savini Hinton, Mimomys pliocenicus (Major), Mimomys ostramoensis Janossy & Meulen and M. medasensis. The presence of enamel islets also in adults of advanced age excludes M. savini and M. ostramoensis. On the other hand the linea sinuosa is identical to that of M. medasensis, illustrated by Michaux (1971) and Esteban Aenlle & Lopez Martinez (1987).

M. medasensis is a species collected in some Late Villanyian sites of the Iberian peninsula (Michaux 1971; Esteban Aenlle & Lopez Martinez 1987; Agusti 1990). Torre Picchio is the first site outside Spain where this arvicolid was discovered. It is one of the rather rare Iberocitanic elements arriving from time to time in the Italian peninsula (at different times) (Kotsakis et al. in press).

Prolagus sp. (Fig. 6 b). Several remains (see Appendix) belong to an ochotonid of the genus Prolagus. The fossils of this genus collected in the Italian mainland are under revision. For this reason we prefer to classify the remains of TP only at a generic level.

A rich population of Prolagus was collected from a fissure filling in Montagnola Senese (Tuscany) (Fondi 1970, 1972); at first assigned to the "Cromerian", this fauna is now considered as late Villanyian (or earliest Biharian) (Maul et al. 1998). Scanty remains of Prolagus are reported from Upper Valdarno deposits of the same age (Rook & Masini 1990) and from the early Villanyian of Arondelli (Piedmont) and Arcille (Tuscany) (Berzi 1967; Hürzeler & Engesser 1976). More recent records of this genus are reported from the Western Mediterranean area (in Sardinia till the XVIII century), but not from mainland Italy (Lopez Martinez 1977).

Oryctolagus cf. O. lacosti (Fig. 6 c). The remains of leporids are fewer than those of the ochotonids (see Appendix) and all are very similar to Oryctolagus lacosti, the Villafranchian rabbit, and are clearly different from Oryctolagus layensis Lopez Martinez or Oryctolagus burgi Nocchi & Sala (cf. Lopez Martinez 1977; Nocchi & Sala 1997a, b). However, the material is rather poor and we prefer an attribution to Oryctolagus cf. O. lacosti.

The Villafranchian rabbit is present in Italy in many assemblages of late Villanyian or early Biharian age (Kotsakis et al. in press). The Villafranchian remains, assigned by many authors to extinct hare species (Lepus etruscus Bosco, Lepus valdarnensis Weithoffer), are considered as synonyms of O. lacosti (see Lopez Martinez 1977).
detailed work of sampling and analysis will enable to fill this gap. Inferences about the biochronology of the TP fauna suggest two possibilities: 1) to assign a Late Pliocene age to the fossiliferous deposit, with the first occurrence of species that will be very common during the early Pleistocene times (e.g. *Axis nesii, Leptobos etruscus*, etc.) or 2) to consider peninsular Italy as a refuge area, in which some vertebrates, molluscs and plants that originated in the Pliocene survived in the Early Pleistocene.

Conclusions

The non marine Santa Maria di Ciciliano Formation, to which the TP section belongs, is heteropic to the marine Chianti-Tevere Formation, which is mostly of Santernian age; in fact, the Late Pliocene was recognised only in a few sites, such as Valle Ricca (Carboni et al. 1993), near Nazzano (Di Bella 1999; Mancini et al. in prep.) and the Lugnano section (Borzi et al. 1998). All these sites are located in the middle Tiber Valley in the so-called Tiber Graben (Borzi et al. 1998), where the Santernian strata of the Chianti-Tevere Formation (characterised by the *Bulimina elegans marginata* Biozone and by significant taxa such as *Bulimina eunea, Globigerina calabra* and *Globigerina aff. G. calida calida*) lie conformably onto the Upper Pliocene. Di Bella (1999) gives a good picture of the biostratigraphic evidences of the Santernian sediments in the middle Tiber Valley.

The heteropy between the non marine S. Maria di Ciciliano Formation and the marine Chianti-Tevere occurs where the latter is already of Early Pleistocene age.

In more detail, the Apennine relief of the Amerini Mts. separates the marine from the non marine basin. However, near S. Pellegri a saddle in the Amerini Mts. caused a topographic link, which induced a well recognisable interfingering between the sediments of these formations, as recorded by both rocks and fossils, i.e. brackish sediments and molluscs in the Santa Maria di Ciciliano Formation and non marine deposits (fluvial sediments, travertines and lignitiferous clays) with fresh-water molluscs and mammals in the Chianti-Tevere Formation (Ambrosetti et al. 1989; Esu & Girotti 1991; Cavinato et al. 1999).

It is noteworthy that such interfingering occurs at the top of the marine succession, well above the Pleistocene boundary and near evident shorelines, which are cut into the Apennine relief (Girotti & Piccardi 1994). Moreover, the fluvial Santa Maria di Ciciliano Formation is separated by an angular unconformity from the underlying Upper Pliocene strata of the lacustrine Fosso Bianco Formation (Conti & Girotti 1978; Ambrosetti et al. 1989, 1995a): the TP section falls in the upper part of the stratigraphic column of the fluvial unit (Fig. 2).
An age attribution for the TP section other than Early Pleistocene is therefore problematic, both from the geologic and the stratigraphic point of view.

The TP palaeobotanical remains can be considered relevant because they are in association with several other palaeontological records, thus permitting a thorough reconstruction of Plio-Pleistocene biota and environmental conditions in central Italy. This aspect is more important than any consideration on the richness of the TP carpoflora, which is certainly biased by the poor development of palaeoecological research in this area. In fact the present knowledge permits to state that most outcrops of Pliocene-Early Pleistocene sediments in the Tiberino Basin contain a good record of fossil fruits and seeds, so that the extension of carpological studies would produce much new information.

Nevertheless, TP provides an interesting picture of the palaeoflora at the Plio-Pleistocene transition, with its mixture of extinct (Liriodendron geminata, Lobelia plicocenica, Magnolia cor, Melissa elegans, etc.) and still living species (Cornus avellana, Ceratophyllum demersum, Oenanthe aquatica, Ranunculus flammula, etc.). This implies a marked difference between the Plio-Pleistocene and modern central Italian plant communities. Such a difference can be partly attributed to slightly wetter palaeoclimatic conditions, which permitted such genera as Lobelia and Taxis to grow in the Umbrian lowlands, and partly related to the drastic post-Pliocene plant extinction in southern Europe, caused by the frequent oscillations in temperature and moisture. The fruits and seeds assemblage is therefore indicative of an age ranging from Late Pliocene to Early Pleistocene.

The molluscs indicate the same time range, the assemblages being however more widespread in Early Pleistocene sediments. On the contrary, in the vertebrate assemblage the occurrence of quite rare elements such as Mimomys medesensis, ?Baranogale sp. and ?Gallogorale sp. suggests a Late Pliocene age. A possible explanation for such a contradictory data is to consider peninsular Italy as a refuge area. Among the vertebrae there are some cases of typical Neogene taxa, extinct elsewhere at that time, present in central Italy during the Early Pleistocene. For example the discoglossid Latonita, a genus with a good fossil record in the European Neogene, disappears from Europe during the Early Pleistocene with the exception of the site of Pietrafitta (Umbria, Central Italy). A assemblage of vertebrates and non-marine molluscs belonging to the Farneta F.U. was collected from this site (Esu et al. 1991).

In conclusion we observe a contradiction between biochronological and stratigraphical data. One explanation, consistent with the current data, is to admit a heterochrony in the disappearances of some taxa and their survival in the Italian peninsula for longer time. In any case the vertebrate assemblage of TP is clearly older than the Tasso F.U. and the contradiction mentioned above will be possibly resolved when the existing gaps in the Villafranchian biochronological framework are filled and when more magnetostratigraphic data from non marine successions become available, since the attribution of the Oliolica F.U. to the latest Late Pliocene is assessed mainly on palaeomagnetic analysis.

The palaeoecological observations on the first mollusc assemblage indicates a fluvial environment for the lower, sandy, two thirds of the section. A brief episode of oligohaline waters is evidenced by ostracods in a clayey layer at the top of this first part of the succession. This is followed by a swampy and marshy environment, indicated by the second mollusc assemblage collected in the clays of a swampy paleosol. At the top of the succession ostracods and molluscs collected in the clays indicate a lacustrine environment. The flora is composed of water plants of standing or slowly flowing eutrophic waters, riparian plants and more distant mesic woods indicating a deciduous broad-leaved forest. The whole flora indicates a mean annual temperature of 12±1°C very similar to present day values.

Acknowledgements. We wish to thank Cristina De Angelis of the Soprintendenza Archeologica of Umbria for providing the material for our study and Giorgio Basile for granting us permission to use Fig. 1 and for the valuable discussions on the area's geology. We also wish to thank Elio Robba, Maurizio Gaetani, and an anonymous reviewer for the critical revision of the manuscript. Claudia Bedetti and Marco Pavia for the taxonomic determination of the fossil bird, Andrea Flamino for helping in samples preparation, Fabio Iacuone for his help in the fossil restoration, Laura Di Pietro for technical support, Giorgio D'Arpino and Luciano Spinozzi for the photography work of Pl. 2. Work supported by 1999 Coordinamento MURST grants and by CNR IGAG.
Appendix

Taxonomic notes on a few carpological species

Azolla filiculoides Lamarck (Pl.1, fig. 1, 2)
The megaspores of Azolla are very abundant, especially in sample PI1, and their peculiar morphology makes identification very easy. Megaspores of this type have been long known to be present in the late Cenozoic of Europe and have been assigned mostly to the still-living species Azolla filiculoides. However, several Russian authors, starting from Nikitin (1938), decided to assign the specimens from Eastern Europe to a separate fossil species, i.e. A. interglacialis Nikitin. Mai & Walther (1988) pointed out that the putative differential characters of A. interglacialis were observed also in recent Azolla filiculoides material, so there is no reason to maintain two species. The biogeographic history of Azolla filiculoides is quite interesting; it first appears in the Pliocene of Northern Europe and only in the latest Pliocene spreads to Northwestern Europe. Its occurrence at TP demonstrates that it also penetrated rather early into southern Europe. In the Early and Middle Pleistocene it is widespread in the interglacials (i.e. Holsteinian), having been recovered in Britain as well as in western Siberia. In the Late Eemian this species definitively disappeared from Europe and persisted only in North America. In the past centuries it has been re-introduced by man into Europe, and the fact that it can easily grow in the wild suggests a good adaptation to the modern climatic conditions. Standing waters in eutrophic conditions represent its favourite habitat.

Selaginella magadis Knobloch (Pl.1, fig. 3)
This type of spherical, distinctly reticulate, megaspores is rather common in the Cenozoic deposits of Europe. They are often referred to the group of S. pliocenica Dorofeev, which is found in the Miocene and Pliocene, mainly in Eastern Europe and the Pliocene, in the Czech Republic (Knobloch 1986) and also in Mai (1999) differentiated several species within this group, even if the diagnosis of such species is often based on one or a few specimens and the entity of intraspecific variation is not discussed. The two megaspores from TP can be assigned to Selaginella magadis Knobloch based on the widely reticulate ornamentation, with thin muri and granulose lumina. This species is only known from the Miocene of the Czech Republic (Knobloch 1986) and from the Pliocene of northwestern Italy (Martinetto 1995), therefore its occurrence at TP may be of some biochronological relevance.

Ceratophyllum demersum Linnaeus (Pl.1, fig. 4)
Fruits of Ceratophyllum are very common in Late Cenozoic assemblages of freshwater macrophytes. The remains of TP agree very well with the modern C. demersum, and only one specimen shows a peculiar morphology with distinct warts on the lateral sides (Pl.1, fig.5), a feature which is attributed to intraspecific variation. This species indicates standing or slowly flowing waters in eutrophic conditions.

Hex cl. I. protostega Mai (Pl.1, fig. 5)
The seeds of Hex found in samples PI1 and PI2 surely belong to a species that is either extinct or no more present in Europe. The seeds are rather variable; those with only a few ribs are very similar to those of Hex protostega Mai, a species known in the Miocene and Pliocene of Germany (Mai & Walther 1988). Other specimens show more abundant ribs and resemble Hex centanhedris Reid from the Late Miocene of France (Reid 1920). Furthermore, some seeds of TP resemble another fossil species, Hex fortunates Van der Burgh (1978) from the Early Pliocene of the Rhineland Basin. The description and illustration of these three fossil species do not allow the identification of the TP material, thus a direct examination of the type material will be necessary.

Melissa officinalis L.
The single fossil specimen is very similar in shape to modern nutlets of M. officinalis L.; the ornamentation is quite different, especially for the broadly reticulate pattern at the rounded apex of the fruit, which is characteristic of Melissa elgeous, a species known in the Pliocene and Early Pleistocene from Britain to northern Italy (Mai 1995; Martinetto, in press). It is most probably an extinct species with connections to the modern East Asian species (Mädl 1939).

Pterocarya cf. P. limbegrosus Reid & Reid (Pl.1, fig. 6)
The easily identified endocarps of Pterocarya are very compressed in the TP section, creating some problems when comparing recent and fossil material. However, apart from the strong deformation, most specimens of sample PI0 perfectly match analogous material assigned to P. limbegrosus Reid & Reid (collected at Tegelen, in the Late Pliocene of Limburg, type locality of the species - coll. DSTT), a very common species in the Pliocene and early Pleistocene of northern Italy (Martinetto 1999).

According to Trau (1963, p. 15) the fruits of P. limbegrosus are very variable and 'more or less comparable' to those of three recent species: P. buplebusis, P. rhoifolia Siub & Zucc. and P. pteroerata (Michx.) Kunth. (= P. fraxinifolia (Lam.) Spach). This means that it is difficult to decide, based on fruit morphology, when the 'fossil' species name P. limbegrosus has to be abandoned in favour of the name of the modern Caucasian species, P. fraxinifolia (Lam.) Spach, which is thought to occur in central Italy during the Middle Pleistocene (Folliere 1988).

In addition, it was noticed that the fruits from sample PI1 show the predominance of a rather peculiar morphotype, which is rare or absent in both P. limbegrosus and P. fraxinifolia: the size is smaller, the base is more acuate and continues in a short stalk; finally, the equatorial zone of most specimens is marked by an irregular ridge (Pl. 1, fig. 6) and/or a series of warts or even spines. The role of this morphotype in the taxonomical assessment of the juglandaceous endocarps from TP still needs to be carefully evaluated.

Liriodendron geninata Kirchheimer (Pl.1, fig. 10)
Two seed couplets show the typical shape and ornamentation of L. geninata, a fossil species with seed characters distinct from those of the recent species (Mai & Walther 1988), which grow in North America and East Asia. In central Europe L. geninata is thought to disappear definitively at the end of the Pliocene (Mai & Walther 1988; Westerholt et al. 1998), while the most recent occurrence in Italy is recorded at the Buronzo site in Piedmont, thought to be of Late Pliocene or Early Pleistocene age (Martinetto 1999). It is very likely that this species may last longer in Italy, as suggested by the occurrence of Liriodendron pollen in Early Pleistocene deposits (Bertoldi 1990).

Decodon cl. D. gibbus (Reid) Nikitin (Pl.1, fig. 8, 9)
These thick-walled seeds are characterised by an expanded dorsal side; however, when they are dorsoventrally compressed this character is no longer evident and they resemble D. gibbus (Reid) Nikitin. The type material of both species originates from the French site of Point-de-Gall (Reid 1920), now assigned to the Late Miocene. The group of species allied to D. gibbus is common in the Miocene and Pliocene, and it rarely occurs also in the early and middle Pleistocene (Mai & Walther 1988). The nearest living relative is Decodon verticillatus (L.) Gmelin, a herbaceous plant that grows in dump places of Eastern North America.

Boehmeria sp. (Pl. 1, fig. 16, 17)
Two fruitlets from sample PI1 can be assigned to the urticaeous genus Boehmeria based on the narrow wing which borders the lateral margins and the apex of the narrowly ovate achene. The specimen illustrated (Pl. 1, fig. 16, 17) has lost most of the wing, with only a small fragment preserved at the top of the left side. Most likely these remains represent a herbaceous plant, and indeed an exotic element, since the living relatives grow either in America or East Asia. These specimens differ from B. lobbiana Dorofeev, rather common in the Pliocene of northern Italy (Martinetto 1999), for the marked asymmetry of the achene; however it is difficult to assess their specific position, since Dorofeev (1982) described several poorly differentiated fossil species in Eastern Europe.
Scirpus tabernaemontani Gmelin (Pl. 1, fig. 18)
The dimensions, the slender outline and the well-developed beak at the apex of the nautil are useful to differentiate the fruits of this species from similar taxa within the subgenus Schoenoplectus. At present S. tabernaemontani is found mainly along the coasts, where it tolerates brackish conditions; however, it can also grow in damp places and freshwater basins far from the sea (Pignatti 1982).

Vertebrate remains (measurements in mm)

Amphibia
Anura indet.
TP/sn/A 1. One fragmentary tibia-fibula.

Reptilia
Enyos orbicularis
TP/sn/R 1-34. One fragmentary maxilla, two neurals, one suprapygal, several costals (fragmentary), many peripherals, three epipelia (one fragmentary), one entoplastron, four big fragments of hyoplastra, one fragment of hypoplastron and three xiphiplastrae.

Mammalia
Canis indet.
TP sn. Carposmetatarsus.

Aves
Ciconiidae
TP sn. Tarsopteryx.

Vertebrate remains (measurements in mm)

Amphibia
Anura indet.
TP/sn/A 1. One fragmentary tibia-fibula.

Reptilia
Enyos orbicularis
TP/sn/R 1-34. One fragmentary maxilla, two neurals, one suprapygal, several costals (fragmentary), many peripherals, three epipelia (one fragmentary), one entoplastron, four big fragments of hyoplastra, one fragment of hypoplastron and three xiphiplastrae.

Mammalia
Canis indet.
TP sn. Carpo metavarcarpus.

Aves
Ciconiidae
TP sn. Tarsopteryx.

Vertebrate remains (measurements in mm)

Amphibia
Anura indet.
TP/sn/A 1. One fragmentary tibia-fibula.

Reptilia
Enyos orbicularis
TP/sn/R 1-34. One fragmentary maxilla, two neurals, one suprapygal, several costals (fragmentary), many peripherals, three epipelia (one fragmentary), one entoplastron, four big fragments of hyoplastra, one fragment of hypoplastron and three xiphiplastrae.

Mammalia
Canis indet.
TP sn. Carpo metavarcarpus.

Aves
Ciconiidae
TP sn. Tarsopteryx.

Vertebrate remains (measurements in mm)
REFERENCES

Mai D. H. & Waltber (1988) - Die piazziæ Floren von...

Mancini M., Cavinato G.P. & Giorgetti O. (in prep.) - Il Quaternario della media valle del Tevere.

Martinetto E. (in press) - Studies on some exotic elements of the Pliocene floras of Italy. Palaeontographica B, Mai-Festschrift, Stuttgart.

Nocchi G. & Sala B. (1997a) - The fossil rabbit from Valdemino cave (Borgio Verezzi, Savona) in the context of Western Europe Oryctolaginique of Quaternary. Palaeoecevtebrata, 26: 167-187, Montpellier.

Nocchi G. & Sala B. (1997b) - Oryctolagus burgi n.sp. (Mammalia: Lagomorpha) from the Middle Pleistocene levels of Grotta Valdemino (Borgio Verezzi, Savona, northwest Italy). Palaeontol. Evolocuio, 30/31: 19-38, Sabadell.

Sacco F. (1897) - I moluschi dei terreni terziari del Piemonte e della Liguria. Pars 22, 148 pp., Clausen, Torino.

