Nitrooxymethyl-Substituted Analogues of Rofecoxib: Synthesis and Pharmacological Characterization

This is the author's manuscript

Original Citation:
Nitrooxymethyl-Substituted Analogues of Rofecoxib: Synthesis and Pharmacological Characterization / Donatella Boschi; Clara Cena; Antonella Di Stilo; Barbara Rolando; Paola Manzini; Roberta Fruttero; Alberto Gasco. - In: CHEMISTRY & BIODIVERSITY. - ISSN 1612-1872. - STAMPA. - 7:5(2010), pp. 1173-1182.

Availability:
This version is available http://hdl.handle.net/2318/76135 since

Published version:
DOI:10.1002/cbdv.200900421

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Nitrooxymethyl-Substituted Analogues of Rofecoxib: Synthesis and Pharmacological Characterization

by Donatella Boschi*, Clara Cena*, Antonella Di Stilo*, Barbara Rolando*, Paola Manzini*, Roberta Fruttero*, and Alberto Gasco*

*) Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, I-10125 Torino (phone: +390116707670; fax: +390116707286; e-mail: alberto.gasco@unito.it)

b) SIMT Banca del Sangue, AOU S. Giovanni Battista, C.so Bramante 88, I-10126 Torino

Nitrooxymethyl-substituted derivatives of Rofecoxib were synthesized and tested for their cyclooxygenase (COX)-inhibiting activity in whole human blood, vasodilator potency on rat aorta strips, and for their capacity of inhibiting platelet aggregation of human platelet-rich plasma. The results show that their potency and selectivity in inhibiting COX isoforms, as well as their anti-aggregatory properties, are closely dependent on the position at which the NO-donor nitrooxymethyl function is introduced into the Rofecoxib scaffold. All the products were capable of dilating rat aorta strips precontracted with phenylephrine in a dose-dependent manner, through a cGMP-dependent mechanism. Compound 10 emerged as a quite potent COX-2-selective inhibitor endowed with good vasodilator activity. Interestingly, compound 19 behaved as a potent selective COX-1 inhibitor, and displayed good vasodilator and anti-aggregatory properties. The hydroxymethyl derivatives, potential metabolites of the nitrooxymethyl analogues, were similarly studied for a comparison.

Introduction. – The principal pharmacological effects of the traditional non-steroidal anti-inflammatory drugs (tNSAIDs) are related to their ability to inhibit the cyclooxygenase (COX) isoforms COX-1 and COX-2, two enzymes involved in the production of prostanoids from arachidonic acid [1]. A wide amount of experimental evidence shows that the inhibition of the COX-2 isoform is principally associated with the anti-inflammatory and analgesic properties of the NSAIDs, while the inhibition of the COX-1 isoform is responsible for their anti-aggregatory and gastrotoxic effects [2][3]. On these bases, a new class of inhibitors endowed with a high selectivity for the COX-2 isoform was developed as anti-inflammatory drugs [4]. These products, called Coxibs, are characterized by reducing prostaglandin (PG)-dependent inflammation, while maintaining protective gastric PG synthesis [2][5][6]. A number of them, Rofecoxib (1) [7], Celecoxib (2), Valdecoxib (3), Etoricoxib (4), and Lumiracoxib (5), were introduced into the market [8].

During the clinical use of these Coxibs, it was found that they can increase the risk of heart attack and stroke. This cardiotoxicity is due to their capacity of reducing the biosynthesis of prostacycline (PGI2) in vivo, with consequent tipping of prostanoid balance in favor of thrombogenic tromboxane [9–11]. Because of their adverse cardiovascular effects, Rofecoxib and Valdecoxib were withdrawn from the market [8]. This removal decreased the interest in the selective COX-2 inhibitors and discouraged the pharmaceutical companies to develop further this kind of drugs. Today, there is a
renewed attention to Coxibs based on the finding that a meta-analysis of 140 randomized trials of five different Coxibs showed that their use was associated with a relatively low incidence of major vascular events [12][13]. Therefore, these drugs could be used with appropriate population of patients at low cardiovascular risk. In addition, recent discoveries revealed new functions for COX-2 enzyme, including an important role in tumorigenesis [14] with consequent possible applications of Coxibs in the treatment and in the detection of cancer [15]. The use of these drugs has been proposed also for the management of Alzheimer’s disease [16]. A possible way of attempting to reduce cardiotoxicity of Coxibs, and consequently to improve their benefit–risk profile, is to design nitric oxide (NO)-releasing coxibs (NO-Coxibs). Indeed, NO is an endogenous messenger which displays very important roles in maintaining micro- and macrovascular homeostasis, among them vasodilation, inhibition of platelet aggregation, modulation of platelet and leukocyte adherence to vessels, and inhibition of smooth muscle-cell proliferation. In addition, it is essential for normal physiological function in central nervous system (CNS), and it is one of the final effectors in the immune system [17]. Consequently, NO donors are potential useful tools in cancer therapy and in the management of Alzheimer’s disease [18][19]. There are a number of NO-Coxibs reported in literature. They were obtained by using NO donor 3,4-diphenylfuroxan system bearing appropriate substituents [20][21], or by linking selective COX-2 inhibitors with either diazen-1-ium 1,2-diolate [22], or nitrooxy NO-donor moieties [23–26]. As development of our work in this field, we now describe the synthesis, COX-inhibition profile studied in human whole blood, and anti-aggregatory and in vitro vasodilator activities of the compounds 10, 15, and 19, containing nitrooxy function(s) inserted into the Rofecoxib scaffold. The inhibitory activity of the related OH analogs 9, 14, and 18, used as intermediates for the preparation of the target compounds, is also reported in view of their possible role of metabolites [27].
Results and Discussion. – 1. Chemistry. The synthetic pathway used to prepare the nitrooxy-substituted Rofecoxib derivatives is depicted in the Scheme. The method used to prepare furan-2(5H)-one derivatives is the same reported by Thérien et al. for the formation of Scheme a).

Scheme

a) HBr/Br₂, CH₂Cl₂, 0°C, b) Et₃N, MeCN, c) 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), MeCN, 60°C (r.t. for 9), d) Ph₃P, AgNO₃, N-Bromosuccinimide (NBS), –15°C → r.t. (60°C for 19).
synthesis of Rofecoxib [28]. The Br-substituted ketone 6 treated with the [4-(hydroxymethyl)phenyl]acetic acid (7) afforded, in the presence of Et₃N, ester 8. This product underwent cyclization, under the action of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), to give the 4-hydroxymethyl-substituted Rofecoxib 9. Treatment of 9, dissolved in MeCN, with N-bromosuccinimide (NBS) in the presence of Ph₃P, and then with AgNO₃, afforded the expected mononitrooxy substituted final compound 10. This is a recent method for the preparation of nitrates under mild conditions [29]. The sequence of reactions aforementioned was used to prepare 13, 14, and the dinitrooxy-substituted final compound 15, starting from 7 and 12. This latter intermediate was obtained by bromination of the known 1-[4-(hydroxymethyl)phenyl]ethanone (11). Similarly, the intermediates 17, 18, and the mononitrooxy-substituted Rofecoxib analog 19 were sequentially synthesized starting from 12 and 2-phenylacetic acid (16).

2. COX Inhibition and Platelet Anti-aggregatory Activity. The ability of the products and of their alcoholic analogues to inhibit the COX enzymes was evaluated in human whole blood according to a well-established procedure [30]. To assess the extent of COX-2 isoform inhibition, human heparinized whole blood was incubated with lipopolysaccharide (LPS) overnight in the presence of the inhibitors, and plasma was assayed for PGE₂ production as a function of COX-2 inhibition. For COX-1 inhibition activity, whole blood samples without any anticoagulant were incubated with the inhibitors for 1 h. Then, plasma was collected and analyzed for TXB₂ production. The potencies of the products expressed as IC₅₀ values are collected in Table 1. When these values could not be derived because inhibition did not reach 50%, the inhibition at maximal concentration tested (100 μM) was calculated. Analysis of the data shows that the introduction of one nitrooxymethyl group in para-position of the 3-phenyl ring of Rofecoxib gives rise to 10, which is a COX-2 inhibitor ca. 15 times less potent than the lead, but it retains a quite good degree of COX-2/COX-1 selectivity. Its OH analogue 9 behaves similarly. By contrast, when in 1 the MeSO₂ group, which is an important determinant for the COX-2 selectivity [4], is replaced with the nitrooxymethyl moiety, 19 is obtained that is a COX-1 inhibitor ca. 100 times more potent and a COX-2 inhibitor about sixfold less potent than the lead. Inhibitory potencies and selectivity are even more evident in its OH analog 18. Finally, the simultaneous presence of two nitrooxymethyl groups in para-positions of the two phenyl rings of 1 provides 15, which displays very feeble COX inhibition, when tested on both the two isoforms. By contrast, its dihydroxy analog 14 is a quite potent and selective COX-1 inhibitor. The COX inhibitory profiles of the nitrooxy-substituted Rofecoxib compounds and of their OH analogs here described parallel very well those of the related Celecoxib derivatives previously described [26]. The only difference is the definitively lower inhibitor activities of the bis(hydroxymethyl)- and bis(nitrooxymethyl)-substituted compounds 14 and 15, respectively. All products were also tested for their ability to inhibit collagen-induced platelet aggregation of human platelet-rich plasma (PRP). Only the nitrooxymethyl-substituted final compound 19 displayed potent anti-aggregatory activity in the micromolar range, in keeping with its high ability to inhibit COX-1 isoform (Table 2). A similar behavior was shown by the HOCH₂-substituted intermediates 14 and 18.

3. Vasodilation. The in vitro vasodilator activity of the NO-donor analogs of Rofecoxib 10, 15, and 19 was assessed on rat aorta strips precontracted with
Table 1. \textit{COX-1 and COX-2 inhibition data for compounds and Rofecoxib 1, taken as reference}

\begin{tabular}{llcc|cc}
\hline
Compound & R1 & R2 & COX-1 & COX-2 \\
 & & & IC\textsubscript{50} ± SE [\mu M]a) & % Inhibition ± SEb) & IC\textsubscript{50} ± SE [\mu M]a) & % Inhibition ± SEb) \\
\hline
1 & SO\textsubscript{2}Me & H & 64 ± 13 & – & 1.5 ± 0.8 \\
9 & SO\textsubscript{2}Me & CH\textsubscript{2}OH d) & 7.6 ± 6.5 & 22 ± 5 \\
10 & SO\textsubscript{2}Me & CH\textsubscript{2}ONO\textsubscript{2} d) & 11 ± 4 & 22 ± 6 \\
14 & CH\textsubscript{2}OH & CH\textsubscript{2}OH & 5.7 ± 1.7 & 21 ± 4 \\
15 & CH\textsubscript{2}ONO\textsubscript{2} & CH\textsubscript{2}ONO\textsubscript{2} d) & 36 ± 2 & 39 ± 11 \\
18 & CH\textsubscript{2}OH & H & 0.24 ± 0.03 & 8.4 ± 2.8 \\
19 & CH\textsubscript{2}ONO\textsubscript{2} & H & 0.61 ± 0.17 & 9.6 ± 4.2 \\
\hline
\end{tabular}

a) Values are expressed as IC\textsubscript{50} ± standard errors. b) Values are expressed as mean percentage of inhibition ± standard errors. c) Maximum concentration tested. d) Inhibition of control prostanoid production did not reach 50%.

Table 2. \textit{Anti-Aggregatory and Vasodilating Properties of Derivatives}

\begin{tabular}{lllll}
\hline
Compound & R1 & R2 & Anti-aggregatory activity & Vasodilating activity \\
 & & & IC\textsubscript{50} (95% CL) & EC\textsubscript{50} ± SE [\mu M]d) \\
 & & & [\mu M]a) & % Inhibition ± SEb) \\
\hline
1 & SO\textsubscript{2}Me & H & 48 (44–51) & inactive \\
9 & SO\textsubscript{2}Me & CH\textsubscript{2}OH c) & 1.7 ± 1.7 & 0.21 ± 0.06 \\
10 & SO\textsubscript{2}Me & CH\textsubscript{2}ONO\textsubscript{2} c) & 29 ± 15 & 11 ± 1.3f) \\
14 & CH\textsubscript{2}OH & CH\textsubscript{2}OH & 23 (19–28) & 0.28 ± 0.05 \\
15 & CH\textsubscript{2}ONO\textsubscript{2} & CH\textsubscript{2}ONO\textsubscript{2} c) & 5.3 ± 4.4 & 15 ± 4d) \\
18 & CH\textsubscript{2}OH & H & 39 (35–42) & 0.22 ± 0.08 \\
19 & CH\textsubscript{2}ONO\textsubscript{2} & H & 46 (42–50) & 35 ± 3e) \\
ISDNb) & & & 4.7 ± 0.6 & >100h) \\
\hline
\end{tabular}

a) Values are expressed as IC\textsubscript{50} with 95% confidential limits in brackets. b) Values are expressed as mean percentage of inhibition ± standard errors. c) Maximum concentration tested. d) Values are expressed as EC\textsubscript{50} ± standard errors. e) Inhibition of control aggregation effect did not reach 50%. f) Not tested. g) In the presence of \textit{1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ).} h) Isosorbide dinitrate (ISDN) was used as a reference compound.
phenylephrine. All the products were capable of relaxing the contracted tissues in a concentration-dependent manner. Their potencies, expressed as \(EC_{50} \) values, are collected in Table 2. All of them behave as potent vasodilators, more active than isosorbide dinitrate (ISDN) taken as a reference. The vasodilator potencies of the products were reduced, when the experiments were repeated in the presence of 1 \(\mu \)M ODQ (1H-[1,2,4]-oxadiazolo[4,3-\alpha]quinoxalin-1-one), a well-known heme site inhibitor of sGC. This is in keeping with the involvement of NO in the vasodilator action.

Conclusions. – Introduction of nitrooxymethyl and of hydroxymethyl groups on the scaffold of Rofecoxib (1) gives rise to compounds with different COX-inhibitor profiles. The two most interesting products obtained are the compounds 19 and 10. The former is derived from replacement of methylsulfonyl group with nitrooxymethyl moiety in 1. It is a rather potent and selective COX-1 inhibitor, endowed with vasodilator and anti-aggregatory properties. This finding confirms the importance of MeSO2 group for COX-2 selectivity of the lead. To our knowledge, it is the first example of NO-donor selective COX-1 inhibitor which might be further studied as cardioprotective, chemopreventive, and analgesic agent [31]. The latter arises from introduction of nitrooxymethyl group in the \(\text{para} \)-position of the 3-phenyl ring of 1. It is a selective and quite potent COX-2 inhibitor, which displays good vasodilator activity. This product is certainly an interesting NO-Coxib, worthy of additional study owing to its potential low cardiotoxicity.

This work was supported by a grant from Regione Piemonte Progetto Ricerca Sanitaria Finalizzata 2007.

Experimental Part

General. Anh. MgSO₄ was used as drying agent for the org. phases. Flash column chromatography (FC): silica gel (Merck Kieselgel 60, 230–400 mesh ASTM) using the reported eluents. TLC: 5 × 20 cm plates with 0.25-mm layer thickness. M.p.: in capillaries (Buchi 540 instrument); m.p. with decomposition were determined after introduction of the sample in the bath at 10⁸ below the m.p.; a heating rate of 1° min⁻¹ was used. All compounds were routinely checked by FT-IR (Perkin-Elmer SPECTRUM BXII), \(^1\)H- and \(^13\)C-NMR (Bruker Avance 300), and MS (Finnigan-Mat TSQ-700). Elemental analysis (C, H, N): REDOX (Monza); the results were within ±0.4% of the theoretical values. Compounds 6 [28] and 11 [32] were synthesized according to the methods described in the literature, 7 and 16 were supplied by Sigma-Aldrich.

2-Bromo-1-[4-(hydroxymethyl)phenyl]ethanone (12). A soln. of Br₂ (4.38 g, 27.3 mmol) in CH₂Cl₂ (50 ml) was added at 0°, during 2 h, to a stirred soln. of 11 (4.11 g, 27.0 mmol) in CH₂Cl₂ (200 ml) containing conc. HBr (4 drops). The mixture was washed with H₂O and with a sat. soln. of NaHCO₃, then dried, and evaporated to give a crude compound that was purified by FC (CH₂Cl₂/AcOEt 98:2) to give 12 (2.23 g, 36%). White solid. M.p. 68–69° (i-Pr₂O). \(^1\)H-NMR (CDCl₃): 7.98 (AA’BB’, \(J = 8.4, 2 \) arom. H); 7.49 (AA’BB’, \(J = 8.4, 2 \) arom. H); 4.80 (s, CH₂OH); 4.45 (s, CH₂Br); 1.94 (s, OH). \(^13\)C-NMR (CDCl₃): 191.1; 147.3; 133.1; 129.2; 126.8; 64.5; 30.9. EI-MS: 230, 228 (M⁺), 135 (100). Anal. calc. for C₉H₉BrO₂ (229.07): C 47.19, H 3.96; found: C 47.14, H 3.98.

2-[4-(Methylsulfonyl)phenyl]-2-oxoethyl [4-(Hydroxymethyl)phenyl]acetate (8). A soln. of 6 (1.66 g, 6.0 mmol) in MeCN (25 ml) was added dropwise to a soln. of 7 (1.00 g, 6.0 mmol) and Et₃N (0.83 ml, 6.0 mmol) in MeCN (30 ml) at r.t. After 7 h, the mixture was concentrated in vacuo, and the residue was dissolved in AcOEt. The combined org. phases were washed with H₂O, in HCl, and brine, dried and evaporated. FC (petroleum ether (PE):i-PrOH 7:3) of the crude product gave 8 (1.85 g, 85%). White
solid. M.p. 107–108° (MeOH). 1H-NMR (CDCl3): 7.98 (s, 4 arom. H); 7.34–7.26 (m, 4 arom. H); 5.28 (s, CH2O); 4.69 (s, CH3OH); 3.81 (s, CH3CO); 3.07 (s, Me); 2.03 (s, OH). 13C-NMR (CDCl3): 191.9, 170.8, 144.6, 140.3; 138.1, 132.4; 129.5; 128.8; 127.9; 127.3; 66.7; 64.9; 44.3; 40.6. EI-MS: 362 (M+), 165 (100). Anal. calc. for C10H10O3 (186.24): C 68.78, H 5.41; found: C 68.66, H 5.32.

2-[4-(Hydroxymethyl)phenyl]-2-oxoethyl 2-Phenylacetate (17). Compound 17 was obtained by the above described procedure for 8, starting from 12 and 16. The mixture was kept at r.t. for 24 h. The mixture was poured into ice/H2O and the pure white precipitate was filtered and dried (yield 52%). M.p. 81–82° ((i-Pr)2O). 1H-NMR ((D6)DMF): 7.37–7.28 (m, 4 arom. H); 5.49 (s, CH2O); 5.40 (t, J = 5.7, OH); 5.16 (t, J = 5.7, OH); 4.59 (d, J = 5.7, CH2OH); 4.48 (d, J = 5.7, CH2OH). 13C-NMR ((D6)DMF): 193.3; 171.9; 149.5; 141.5; 133.1; 133.0; 128.5; 127.7; 67.4; 63.3; 63.0; 40.4. EI-MS: 296 ([M – H2O]+), 135 (100). Anal. calc. for C10H10O3 (186.24): C 68.78, H 5.41; found: C 68.66, H 5.32.

3-[4-(Hydroxymethyl)phenyl]-2-(Hydroxy-4-methylsulfonyl)phenyl]furan-2(5H)-one (9). A soln. of DBU (0.36 g, 2.4 mmol) in dry MeCN (15 ml) was added dropwise during 1 h to a soln. of 8 (1.05 g, 7.0 g, 4.7 mmol) in dry MeCN (50 ml) at r.t. under N2. The mixture was poured into H2O and the product was extracted with CH2Cl2. The combined org. phases were washed with H2O and brine, and dried (MgSO4) and evaporated. The crude product obtained was crystallized by H2O/EtOH to give product (0.70 g, 69% yield). M.p. 161–162°. 1H-NMR ((D6)DMSO): 7.37–7.28 (m, 8 arom. H); 5.40 (s, CH2 of furan); 5.27 (t, J = 5.4, OH); 4.53 (d, J = 5.4, CH2OH); 3.26 (s, Me). 13C-NMR ((D6)DMSO): 173.7; 157.2; 145.2; 142.3; 128.9; 128.7; 127.5; 126.9; 126.7; 70.9; 62.6; 43.2. EI-MS: 344 (M+), 100%. Anal. calc. for C10H10O4S (234.39): C 59.66, H 5.01; found: C 59.85, H 5.05.

4-[4-(Hydroxymethyl)phenyl]-3-phenylfuran-2(5H)-one (14). A soln. of DBU (0.27 g, 1.7 mmol) in dry MeCN (20 ml) was added dropwise during 10 min to a soln. of 13 (1.08 g, 3.4 mmol) in dry MeCN (180 ml) kept at 60° under N2. After 45 min, the soln. was concentrated to 20 ml under vacuum, the residue was poured into H2O and the product was extracted with AcOEt. The combined org. phases were treated with H2O and brine, and dried and evaporated. The crude product was purified by crystallization from 1,2-dichloroethane to give the title product as a yellow solid (0.70 g, 69% yield). M.p. 161–162°. 1H-NMR ((D6)DMSO): 7.37–7.28 (m, 8 arom. H); 5.36 (s, CH2 of furan); 5.24–5.30 (m, 2 OH); 4.54–4.49 (m, 2 CH2OH). 13C-NMR ((D6)DMSO): 173.1; 157.2; 145.2; 142.3; 128.9; 128.7; 127.3; 126.6; 126.5; 126.4; 124.1; 70.5; 62.5; 62.4. EI-MS: 296 (M+, 100%). Anal. calc. for C10H10O5 (230.27): C 72.16, H 5.42; found: C 71.78, H 5.37.

4-[4-(Hydroxymethyl)phenyl]-2-[1,2-dihydro-4-[4-(methylsulfonyl)phenyl]furan-3-yl]benzyl Nitrate (10). AgNO3 (0.39 g, 2.3 mmol) and Ph3P (0.51 g, 1.9 mmol) were added to a soln. of 9 (0.53 g, 1.5 mmol) in dry MeCN (15 ml) under N2. The mixture was cooled to –15° and NBS (1.69 g, 7.1 mmol) was added portionwise. Stirring was continued at –15° for 1 h and then at r.t. for 24 h. CH2Cl2 was added to the mixture, and the precipitate was removed by filtration. The filtrate was washed with H2O and brine, and dried and...
Concentrated in vacuo. The residue was purified by FCC (CH2Cl2/MeOH 95:5) to give 10 (0.40 g, 67%). White solid. M.p. 170–172° (MeOH).

13C-NMR (CDCl3): 173.1; 154.9; 134.8; 132.0; 129.8; 129.4; 129.2; 129.1; 128.8; 128.0; 127.2; 73.7; 70.5. EI-MS: 386 (M+), 343 (100). Anal. calc. for C46H35NO6S (552.69): C 65.69, H 3.88; found: C 65.68, H 3.85.

(2,5-Dihydro-2-oxofuran-3,4-diyl)bis(benzene-4,1-diylnitroxylyl) Dinitrate (15). AgNO3 (1.71 g, 10.0 mmol) and Ph2P (2.19 g, 8.0 mmol) were added to a soln. of 14 (0.99 g, 3.0 mmol) in dry MeCN (15 ml) under N2. The mixture was cooled to −15°, and NBS (1.42 g, 8.0 mmol) was added portionwise. Stirring was continued at −15° for 1 h and then at r.t. for 4 h. AcOEt was added to the mixture, and the precipitate was removed by filtration. The filtrate was washed with H2O and brine, and dried and concentrated in vacuo. The residue was purified by FCC (CH2Cl2) to give 15 (10.50%, 39%). White solid. M.p. 100–101° (MeOH). 1H-NMR (CDCl3): 7.50–7.34 (m, 8 arom. H); 5.44 (s, CH2 of furan); 5.21 (s, CH2ONO2). 13C-NMR (CDCl3): 172.8; 155.8; 135.1; 131.1; 129.5; 129.4; 129.0; 128.8; 126.3; 74.2; 73.6; 70.6. EI-MS: 386 (M+), 264 (100). Anal. calc. for C18H13NO5S (389.38): C 55.52, H 3.88; found: C 55.68, H 3.85.

Concentrated in vacuo. Therefore, diluted 100 times in the incubation tubes. The COX-1 aliquots were incubated in glass tubes for 1 ml of untreated blood to test COX-1 inhibition. The final concentrations of the tested compounds were, residues were dissolved by vortexing either in 1 ml of heparinized blood to test COX-2 inhibition, or in water. The serum was ready to be tested for platelet TXB2 production. % Inhibition in samples treated with the test compounds was evaluated in comparison with control samples with basal TXB2 production. Standard curves with known concentrations of TXB2 and of PGF2α were used to determine prostanooid concentrations in the sample wells. Percent inhibition in compound-treated samples was calculated by comparison with untreated controls. The concentration of the tested compounds causing 50% inhibition (IC50) was calculated from the concentration–inhibition response curve (5–6 experiments).

Inhibition of Platelet Aggregation. Platelet-rich plasma (PRP) was prepared by centrifugation of citrated blood at 200g for 20 min. Aliquots (500 μl) of PRP were added into aggregometer (Chrono-log 4902D) cuvettes, and aggregation was recorded as increased light transmission under
continuous stirring (1000 rpm) at 37° for 10 min after addition of the stimulus. Collagen (1.0 μg/ml) was used as platelet activator in PRP. The inhibitory activity of the compounds was tested by addition of drug to PRP 10 min before addition of the stimulus (collagen). Drug vehicle (≤0.5% DMSO) added to PRP did not affect platelet function in control samples. At least five experiments were performed for each compound. The anti-aggregatory activity of the tested compounds was evaluated as % inhibition of platelet aggregation compared to controls (5–6 experiments), and IC_{50} values were calculated by nonlinear regression analysis.

Vasodilating-Activity Assay. Thoracic aortas were isolated from male Wistar rats weighing 180–200 g. The endothelium was removed, and the vessels were helically cut: three strips were obtained from each aorta. The tissue was placed in organ baths containing 30 ml of Krebs-bicarbonate buffer of the following composition [mM]: NaCl 111.2, KCl 5.0, CaCl 2 2.5, MgSO 4 1.2, KH 2PO 4 1.0, NaHCO 3 12, glucose 11.1, maintained at 37° and continuously gassed with 95% O 2 and 5% CO 2 (pH 7.4). The aortic strips were allowed to equilibrate for 120 min and then contracted with 1 μM (–)-phenylephrine. When the response to the agonist reached a plateau, cumulative concentration–response curves to compounds 10, 15, and 19 were determined. The effect of 1 μM ODQ was evaluated in a separate series of experiments in which the ODQ was added 5 min before contraction. EC_{50} Values are means of 4–10 determinations. Responses were recorded by an isometric transducer connected to the MacLab System PowerLab®.

REFERENCES

Received December 23, 2009