Gene Expression and Sporophytic Self-Incompatibility in Hazelnut

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/76902 since

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Gene Expression and Sporophytic Self-Incompatibility in Hazelnut

D. Torello Marinoni, C. Beltramo, A.Akkak1, M.L. Destefanis, P.Boccacci and R. Botta

Dipartimento di Colture Arboree, Università degli Studi di Torino, Via Leonardo Da Vinci 44, 10095 Grugliasco (Torino), Italy

Keywords: Corylus avellana L., S locus, female determinant, Differential Display

Abstract

The European hazelnut (Corylus avellana L.) is a monoecious tree and exhibits sporophytic self-incompatibility. Self-incompatibility is a genetic system that prevents the self-fertilization allowing the pistil to reject the pollen of genetically close individuals. Self-incompatibility is controlled by a single multi-allelic locus, the S locus.

Sporophytic self-incompatibility (SSI) has been reported in: Asteraceae, Betulaceae, Brassicaceae, Caryophillaceae, Convolvulaceae and Sterculiaceae. The involved molecular mechanisms are still partly unknown but in the Brassicaceae. Studies on gene regulation of fertility, pollination and fertilization in hazelnut are very few; so with this research we propose to contribute to the knowledge about the mechanism of sporophytic self-incompatibility in hazelnut.

The Differential Display technique was applied for the study of the female determinant of self-incompatibility. Two developmental stages of styles/stygas were compared: before emergence from the bud and at full bloom. The results allowed to isolate partial sequences that showed an interesting homology degree with transmembrane serine-threonine kinase receptor of Brassica oleracea. Believing that the female determinant of self-incompatibility in hazelnut is very likely a membrane receptor, the efforts for getting differentially expressed sequences of this type were increased. Primers were designed on conserved regions of serine-threonine kinase receptors. Four differentially expressed fragments were isolated from stigmas at full bloom: after blasting in TIGR and NCBI databases, one was homologous to a gene for a kinase receptor, three were homologous to kinase proteins. The isolated sequences are being studied to check their expression in different tissues and style developmental stages.

INTRODUCTION

The genus Corylus is a member of the Betulaceae family of the order Fagales and includes several species, among which the European hazelnut (Corylus avellana L.) provides the most important cultivated varieties. Corylus avellana L. is a wind-pollinated, monoecious species that exhibits sporophytic self-incompatibility (Thompson, 1979; Me et al., 1983; Zannini et al., 1983; Me et al., 2000). Cultivars thus need to be cross-pollinated by pollinizer trees planted in the orchard in order to ensure good nut set. In addition, the frequent cross-incompatibility between cultivars

1 actual affiliation: Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale (DiSACD), Università degli Studi di Foggia, Via Napoli 25, 71100 Foggia
greatly reduces the choice of varieties that can be used as pollinators. This problem is increased by the fact that pollinators in orchards should have similar commercial value and the same ripening time of the main cultivar. Therefore, self-incompatibility in this species is an important aspect considered in breeding programs for orchard planting.

Self-incompatibility (SI) is a genetic system that promotes outbreeding, prevents the self-fertilization allowing the pistil to reject the pollen of genetically close individuals, maintaining, therefore, a high heterozygosity level.

Typically in the sporophytic system, SI is controlled by a single multi-allelic genetic locus, the S locus (sterility locus); when an allele is shared between pollen and pistil, then an incompatible response will follow. At present, 28 S-alleles have been identified in hazelnut (Bassil et al., 2001).

Sporophytic self-incompatibility (SSI), has been reported in the families: Asteraceae, Betulaceae, Brassicaceae, Caryophyllaceae, Convolvulaceae and Sterculiaceae. The SI system found in the Brassicaceae, however, is currently the best understood mechanism with both the primary male and female determinants being characterized (Hiscock and McInnis 2003). The studies on this family can generate a possible model of sporophytic self-incompatibility for the study of other plant families.

The Brassica S Locus is constituted by three highly polymorphic genes, encoding for three proteins: SRK (S locus receptor kinase) encoding for a plasma membrane-anchored S receptor kinase responsible for the pollen recognition on the stigma; SLG (S locus glycoprotein) encoding for a glycoprotein synthesized in the stigma which seems to play an accessory role in the incompatibility system; SCR (S locus cysteine-rich protein) encoding for a small cysteine-rich protein expressed in anther determining the pollen phenotype (Takasaki et al., 2000; Shiba et al., 2001; Takayama and Isogai, 2003, Fobis-Loisy et al., 2004, Okamoto et al., 2004; Sato et al., 2004).

Studies about gene regulation of fertility, pollination and fertilization are very few in hazelnut and thus the objective of this work was to investigate the mechanism of self-incompatibility in Corylus avellana. The Differential Display technique, already successfully used to isolate the male determinant of self-incompatibility in Brassica (Takayama et al., 2000) was chosen to investigate the SI female determinant, to isolate sequences differentially expressed in hazelnut flowers buds at 2 stages of stigma development.

The basic principle of Differential Display technique is to amplify the cDNA obtained from mRNA extracted from 2 tissues/organs which are maintained in the same conditions except for one single factor, that is supposed to make a difference in term of gene expressions. The cDNA is amplified using an anchored oligo(dT) and primers of arbitrary sequence; the PCR yield hundred different amplicons that will subsequently be separated by electrophoresis.

MATERIALS AND METHODS
In this research, a comparison by Differential Display was carried out between two developmental stages of female flowers, i.e. before red-dot stage, collected in the month of December, and at full bloom (fully expanded styles, receptive but not pollinated stigmas), collected in the second half of February.

RNA was extracted using the protocol by Chang et al. (1993). cDNA was synthesized through a RT-PCR (reverse transcriptase PCR), using SuperScript™ Reverse Transcriptase kit.

Differential Display was carried out using 2 strategies.

In a first stage of the work, two base anchored oligo(dT) primers ((T)$_{12}$AA, (T)$_{12}$GA, (T)$_{12}$CA, (T)$_{12}$AG, (T)$_{12}$GG, (T)$_{12}$CG (T)$_{12}$AC, (T)$_{12}$GC, (T)$_{12}$CC) were used with 42 decamer primers (Kit Operon) for the amplification PCR-DDRT (Differential Display-Reverse Transcription)
In a second stage, believing that the female determinant of self-incompatibility in hazelnut is very likely a membrane receptor, the efforts for getting differentially expressed sequences of this type were increased. Therefore, 10 degenerate primers on conserved regions of serine-threonine kinase receptors were designed. These primers were used with two-base anchored oligo(dT) primers ((T)_{12}AA, (T)_{12}GA, (T)_{12}CA, (T)_{12}AG, (T)_{12}GG, (T)_{12}CG, (T)_{12}AC, (T)_{12}GC, (T)_{12}CC) for the amplification PCR-DDRT.

For each amplification a repetition was carried out and for each primer combination a negative control was introduced.

The amplicons were, then, separated by electrophoresis on polyacrilamide gel (5%) and visualized by silver staining (Caetano-Annoles and Gresshoff 1994, with some modifications). Differentially expressed bands were extracted from gel and sequenced by capillary electrophoresis on ABI 3130 Genetic Analyzer (Applied Biosystems). Their sequences were aligned with sequences deposited in NCBI and TIGR database (http://www.ncbi.nlm.nih.gov; http://tigrblast.tigr.org/tgi).

RESULTS AND DISCUSSION
The Differential Display technique was chosen to investigate the female determinant of self-incompatibility. From the two different approaches, 80 bands differentially expressed were obtained, sequenced with success and aligned with sequences deposited in NCBI and TIGR database.

Based on results obtained by the alignments, the sequences were divided in four main groups, which represent the type of process in which they might be involved and their possible role.

1) sequences that could be involved in the mechanisms of self-incompatibility system, as membrane receptors, or in the signal transduction;
2) sequences involved in the flower development;
3) sequences involved in general metabolism, cell development, in nucleic acid synthesis, photosynthesis, or coding for transporters or transposons;
4) sequences coding for hypothetical proteins, whose function is still to be defined.

Among the sequences of the first group, the most significant for this research, 3 sequences isolated in mature stigmas were found to have high homology (75%, 65% and 61% respectively) with the sequences of kinase receptors. In particular, 1 fragment showed an interesting homology (61%) with a transmembrane serine-threonine kinase receptor of *Brassica oleracea*. This type of protein belongs to one of 12 subfamilies of kinase proteins: RLK (Receptor-like Kinases). In this sub-family, there are various kinase proteins, including RLK with S domain, similar to SRK of *Brassica*. In fact, SRK proteins have an extracellular domain similar to the S-locus glycoprotein (SLG) of *Brassica*, a transmembrane domain, and a serine-threonine kinase domain. In 1993 Stein and Nasrallah showed serine-threonine kinase activity of SRK_{6}, expressing the gene into *Escherichia coli*. Other 3 sequences, have been aligned with sequences of kinase proteins but their role is still to be defined and could be related to the transduction of the signal.

Three sequences expressed both in style/stigmas before red-dot stage and at full bloom, were aligned (72% of homology degree) with protein containing a thioredoxin domain and belonging to the thioredoxin family. In *Brassica*, was shown that H-thioredoxin proteins are negative regulators in the self-incompatibility system, preventing autophosphorylation of SRK (Mazzurco *et al*., 2001) and therefore this homology could suggest a similar role in hazelnut.

In the second group of sequences, including those involved in flower development, one sequence, expressed in the style/stigma before the red-dot stage, was aligned with a MAF protein (MADS Affecting Flowering) of *Arabidopsis thaliana*. MAF genes are part of MADS box genes and are considered the main factor responsible for the vernalization response (Ratcliffe *et al*., 2003). Another sequence was aligned with a MADS-box gene thought to be involved in the development and identity of floral organs, although its precise role is still under investigation.
CONCLUSION

The objective of this research was to contribute to the knowledge about the mechanism of sporophytic self-incompatibility in hazelnut. Since the self-incompatibility reaction takes place on the stigma surface, and following a release of a recognition factor, it is very likely the presence of a membrane receptor in the stigma, allowing the signal translation afterwards the contact with the incompatible pollen.

The isolated sequences are currently studied to obtain the cDNA full length by RACE (Rapid amplification of cDNA) technique and to verify their identity through the amplification of cDNA and by Northern blotting comparing the gene expression in different tissues and developmental stages.

Moreover, in order to facilitate the identification of the self-incompatibility protein, two dimensional electrophoresis analysis (2D-PAGE) will be used to recognize differentially expressed proteins in the stigma and in the pollen of hazelnut, following the work by Hiscock et al. (2003) and McInnis et al. (2005) carried out for Asteraceae.

ACKNOWLEDGEMENTS

The research was funded by MiUR (projects “Analisi molecolari per lo studio dell’auto-incompatibilità sporofitica in Corylus avellana L.” – PRIN 2003, and “Interazione polline-stigma e fattori responsabili dell’incompatibilità sporofitica in nocciolo (Corylus avellana L) – PRIN 2005)

Literature cited

