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Managing	  pain	   in	   horses	   afflicted	  by	   chronic	   laminitis	   is	   one	  of	   the	   greatest	   challenges	   in	   equine	   clinical	  

practice	  because	  it	   is	  the	  dreadful	  suffering	  of	  the	  animals	  that	  most	  often	  forces	  the	  veterinarian	  to	  end	  

the	  battle	  with	  this	  disease.	  The	  purpose	  of	  this	  review	  is	  to	  summarize	  our	  current	  understanding	  of	  the	  

very	  complex	  mechanisms	   involved	   in	  generating	  and	  amplifying	  pain	   in	  animals	  with	   laminitis	  and	  based	  

on	   this	   information	   to	   propose	   a	  modified	   approach	   to	   pain	   therapy.	   Furthermore	   a	   recently	   developed	  

pain	   scoring	   technique	   is	   being	   presented	   that	   may	   help	   better	   quantify	   pain	   and	   the	   monitoring	   of	  

responses	  to	  analgesic	  treatment	  in	  horses	  with	  laminitis.	  

 

MECHANISMS OF PAIN IN LAMINITIS 

Understanding the neuroanatomy of the equine foot and pathophysiological processes involved in 

triggering and modifying nociception during the course of laminitis, though incompletely 

understood, is essential when searching for effective pain management strategies in affected 

animals. This applies even more if one considers that up to 75 % of horses affected by this disease 

eventually develop severe or chronic lameness and debilitation.1 As emphasized by Orsini and 

colleagues2 inflammation emerges as the common pathological denominator in all cases of laminitis 

and thus also disease-related pain. It is intimately associated with the cascade of events that may 

eventually lead to the complete failure of the lamellar dermal-epidermal bond. Inflammation and 

vascular dysfunction are evident in the early developmental phase of laminitis, when pain or other 

clinical symptoms are still absent.3-5 During this prodromal phase leucocyte extravasation and 

development of platelet microthrombi are accompanied by up-regulated gene expression for key 

inflammatory cytokines (e.g. interleukin [IL]-1β, IL-6), cyclooxygenase (COX)-2, and matrix 

metalloproteinases (MMPs) in the digital laminae.5-9 Locally released and activated MMPs mediate 

degradation of the collagen components of the basement membrane (BM) that is  interposed 

between the secondary dermal (SDL) and epidermal lamellae (SEL) and cause a separation of the 

SEL from the BM.4,10-14  

Sensory innervation of the foot consists of thick myelinated A-fibers (largely Aβ) transmitting 

low-threshold mechanical information and small thin myelinated (Aδ-fibers) and un-myelinated 

afferents (C-fibers) which express a variety of peptides and transmit high-threshold nociceptive 

information.15-19 The Aβ fibers innervate lamellated corpuscles (comparable with Pacinian 

corpuscles) clustered below the digital cushion in the heel segment of the hoof that function as 

proprioceptors and provide a secure gait.17,19 Both nociceptive Aδ- and C-fibers that stain 



immunohistochemically positive for calcitonin gene-related peptide (CGRP) and substance P (SP) 

and are widely distributed throughout the base of the dermal layer (especially dermal papillae in the 

solear and bulbar segment and dermal lamellae in the parietal segment) and run parallel to blood 

vessels without innervating them.17-19 In addition, slow-conducting un-myelinated nerve fibers of 

the autonomic (exclusively sympathetic) nervous system accompany the dense network of blood 

vessels and arteriovenous anastomoses within the hoof capsule.19,20 As in visceral organs, these 

sympathetic nerves not only carry efferent fibers that regulate vasomotor tone, sweat glands and 

pilo erector muscles in the skin but also afferent viscerosensory fibers that signal information about 

vascular lumen, wall stress, and noxious stimulation or hypoxic/ischemic tissue conditions to the 

central nervous system (CNS).19 Hence, they may contribute to sympathetically maintained 

nociceptive stimulation typically unresponsive to conventional analgesics. 

The inflammatory and disadhesion processes that occur during the developmental phase of 

laminitis do not seem to influence activity in sensory nerve fibers of the hoof. Histological data 

suggest that the disruption of the dermo-epidermal laminar bond is initially confined to the non-

innervated basement membrane and epidermal lamellae (grade 1 histological laminitis).4,21 Since 

sensory nerve terminals are located primarily at the base of the dermal lamellae, at this stage of the 

disease they are likely too distant to the site of MMP action to be affected and SEL cell injury and 

local inflammation are not severe enough to cause activation through neurochemical signaling. 

Lacking pain or discomfort the developmental phase of laminitis often goes unnoted and therefore 

treatment is not initiated even though aggressive medication with non-steroidal antiinflammatory 

drugs (NSAIDs) has been claimed to be indicated.7,8 

Unless resolving on their own histological changes at the dermal-epidermal interface progress 

further causing within 24-72 hours the BM to retract so much from SEL that SDL connective tissue 

and SDL capillaries are injured by tension and shear forces (grade 2 histological laminitis),4 likely 

provoking activation of perivascular sensory nerve terminals near the base of the dermal lamellae. 

At this point the developmental phase transits into the acute phase of laminitis that is hallmarked by 

classical signs of inflammation such as bounding digital pulses and increased hoof temperature.3-5 

Nociception is most often recognized by lameness or the characteristic stance of the animal and 

rapidly increasing sensitivity to hoof testers.3,5 Even though evidence for a marked increase in 

COX-2 enzyme activity could not be found in the acute phase of experimentally induced laminitis,8 

concentrations of other vasoactive degradation products of arachidonic acid (e.g. isoprostanes) are 

elevated during the acute phase of experimentally induced laminitis.9 In addition, extensive necrosis 



of the SEL and edema with separation of the dermal-epidermal junction has been noted in the acute 

phase of experimentally induced laminitis.21 Thus, it is most likely that sensitization (peripheral 

hyperalgesia) develops secondary to the action of a variety of locally released inflammatory 

products.15,16,22 As described in other situations of tissue damage, changes in the local environment 

(e.g. tissue pH and local electrolyte (K+) concentrations, accumulation of membrane degradation 

products, cytokines, chemokines, and growth factors from invading inflammatory cells) and up-

regulated enzyme systems may collectively activate both expressed and silent nociceptors and 

sensitize them to noxious and even non-noxious stimuli.22 Furthermore, activated sensory nerve 

fibers in the dermal papillary layer release neuropeptides (e.g. CGRP) which target receptors on 

blood vessels and provoke neurogenic inflammation by causing vasodilation, plasma extravasation, 

and leucocyte attraction.18,19 Even during the acute phase of laminitis, persistent afferent 

nociceptive signaling will initiate neural processes (addressed in detail below) that eventually create 

a state of central potentiation of nociceptive input to the brain (central hyperalgesia)22 mediated in 

part by spinal release of excitatory amino acids, tachykinins, prostanoids and cytokines.16 Some of 

these products reflect the activation of not only neurons, but also non-neuronal cells (astrocytes and 

microglia) which contribute to the release of products (e.g. prostaglandins) that in turn increase 

excitability of dorsal horn neurons.16,22 Both peripheral and early central hyperalgesia may explain 

the rapidly worsening pain horses and ponies experience in the acute phase of laminitis.  

Animals may pass through the acute phase of mild and moderate laminitis without having 

developed any gross structural changes to the dermal-epidermal lamellar apparatus, allowing for 

complete recovery from all symptoms including pain. If not, they enter within 2-3 days the chronic 

phase of laminitis that begins with separation of the distal phalanx from the hoof wall and 

subsequent mechanical collapse of the foot.3-5 It can be subdivided into three subphases, i.e. early 

chronic, chronic stable, and active chronic laminitis.23 It is during the early chronic or active chronic 

phase of the disease process that relenting pain may develop which often is very difficult to control 

with traditional antiinflammatory and analgesic drug treatment.24 However, some animals may pass 

the early chronic phase rather rapidly without showing severe symptoms and enter the stage of 

chronic stable laminitis. At this stage they may not display any significant lameness allowing even 

athletic performance despite unequivocal radiographic evidence of displacement of the distal 

phalanx.21  

The pain animals with chronic laminitis suffer is multifactorial and greatly variable. The 

pathophysiological sequela occurring after structural failure of the lamellar suspensory apparatus in 



one animal may or may not occur to the same extent in another and the type and scope of tissue 

repair and remodeling varies among individual horses.21 A major component determining the 

degree of nociception is the extent of mechanical/structural failure of the foot’s submural tissues, 

with global distal displacement of the digital phalanx (‘sinking’) probably representing the worst 

scenario. Tearing of the dermal-epidermal lamellar bond with rotation or sinking of the coffin bone 

results in widespread injury to C- and Aδ-fibers in the dermal layers. Damaged sensory neurons 

produce spontaneous impulse discharges that lead to sustained levels of excitability.22 These ectopic 

discharges begin to “cross talk” with adjacent uninjured nerve fibers, resulting in amplification of 

the response to noxious stimulation as part of the peripheral hyperalgesia that develops in the 

injured tissue. Distal phalanx displacement also leads to increased submural pressure from the 

edema that accompanies inflammation and/or hemorrhage.21 :Loss of digital stability with 

significant shifts in the distribution of strain and stress forces within the hoof capsule contribute to 

both mechano- (Aβ) and nociceptor (Aδ, C) activities, as does elevated pressure on the coffin bone 

due to greater and longer lasting contact between the internal surface of the sole and the distal 

phalanx during locomotion.21 Elevated eicosanoid (PgE2, LTB4) concentrations have not been 

detected in digital venous blood of painful horses during chronic laminitis.25 Nevertheless, it 

appears that inflammatory mediators released throughout all phases of laminitis play a dominant 

role in the pain perception during early and active chronic laminitis.2,15,16,19 Furthermore, digital 

ischemia resulting from tearing of SDL arterioles, vasoconstriction (primarily venoconstriction) in 

response to inflammatory mediators, arteriovenous blood shunting, thrombosis, and compression of 

the solar vascular bed after digital collapse may contribute important causative factors for pain.3-

5,22,24,26 Also dilation of hoof vessels in response to release of neuropeptides (e.g. CGRP) from 

activated sensory nerve terminals leads to a rapid increase in pressure within the hoof capsule 

(similar to the situation within the skull after vasodilation), thereby exacerbating foot pain.19,20  

The factors mentioned above only partially explain why many animals with chronic laminitis 

experience persistent and often times worsening pain that is refractory to therapy, while other 

animals are spared or recover. While not studied in detail in horses with laminitis, data obtained 

with laboratory animal models and clinical observations in human patients with severe tissue injury 

indicate that lesions to peripheral somatosensory neurons can trigger a complex series of events that 

eventually alter peripheral nerve impulse signaling and central nervous sensory input processing. 

These processes result in a pain state commonly referred to as neuropathic pain, i.e. pain that has its 

origin in a lesion or dysfunction of the sensory transmission pathways in the peripheral or central 



nervous system itself, and thus is considered a pathological condition in and of itself.15,16,23,27-30 The 

changes may include but are not limited to: i) large increases in spontaneous (ectopic) activity in 

injured afferent nerve fibers and dorsal root ganglia (DRG) cell bodies; ii) ectopic activity in 

nociceptors resulting from local increase in sodium channel expression and enhanced sensitivity to 

excitatory products released from local inflammatory cells; iii) facilitation of synaptic 

neurotransmission in the dorsal horn through increased release of or response to excitatory 

neurotransmitters (e.g. NMDA, glutamate) and/or increased ion channel conductance; iv) loss of 

dorsal horn inhibition otherwise mediated by spinal GABA- or glycinergic interneurons; v) reduced 

sensitivity of primary sensory afferents and dorsal horn neurons towards the effects of µ-opioid 

agonists; vi) sprouting of central sympathetic nerve fiber terminals into layers of the dorsal horn 

where they can make abnormal contacts with ascending sensory neurons causing “sympathetically 

maintained pain”; vii) loss of synaptic connectivity and formation of new synaptic contacts between 

low-threshold Aβ fibers and ascending sensory neurons that normally receive input only from 

nociceptive Aδ and C fibers, causing allodynia (table 2); viii) activation of astrocytes and microglia 

leading to an increased spinal expression of pro-excitatory products including prostanoids; and ix) 

neuroimmune interactions including actions of MMPs 9 and 2 capable of inducing neuropathic pain 

through microglial and astrocyte activation.15,27-31 Ectopic neural firing activity occurs within 12 to 

48 hrs after nerve injury, while sensitization and gene expression changes in spinal and maybe 

supraspinal neural networks begin later. Neural lesions alone may not be sufficient to generate 

neuropathic pain and other predisposing factors are of importance.29 Nevertheless, Jones and 

collaborators24 found in horses suffering from recurrent and treatment refractory laminitis, 

neuromorphological changes and altered gene expression that are strikingly similar to those changes 

observed in animal models of peripheral nerve injury or in humans with neuropathic pain (e.g., from 

arthritis, osteosarcoma, or diabetes).16 The nerve fiber composition of digital nerves harvested from 

affected animals was abnormal with significantly lower numbers of un-myelinated (43.2%) and 

myelinated fibers (34.6%) compared to nerves collected from normal horses.24 Furthermore, 

upregulated expression of activating transcription factor-3 (ATF3), a classical marker of peripheral 

nerve injury, was found in DRG cells of both large and small afferents. Also neuropeptide Y (NPY) 

expression was increased in DRG cells of large myelinated fibers innervating the laminitic hoof. 

The abundant presence of MMPs 2 and 9 from the developmental phase onwards may yet be 

another factor contributing to the development of neuropathic neural injury.4,31 Thus, it appears that 

mechanisms of peripheral and central sensitization and neuropathic remodeling described above can 



play a central role in the development of the unrelenting pain experienced by so many horses during 

chronic laminitis.16,29,30 In this pain state mildly noxious or subthreshold stimuli (transmitted by 

small Aδ- and C-afferents) produce an exaggerated pain response due to amplified pre- and 

postsynaptic neuronal sensitivity and activity.24 Normally innocuous mechanical stimuli such as 

those activating the lamellated corpuscles and low threshold Aβ fibers in the heel area when the foot 

touches the ground during locomotion may then be perceived as painful (tactile or mechanical 

allodynia).27,30 This may explain the frequent limb shifting and high sensitivity to the hoof tester. 

 

GRADING PAIN IN LAMINITIS 

Various scoring systems employing either behavioral characteristics only or both behavioral and 

physiological parameters have been developed to monitor pain in horses.32 Obel33 was among the 

first to describe a grading system for lameness in horses affected by laminitis. Both the Obel 

Grading System and the later developed graded lameness scale (0-5) of the American Association 

of Equine Practitioners34 are subject to high inter-observer variability, do not fully account for the 

complexity of equine pain behaviors, and are somewhat limited when assessing clinically relevant 

changes in nociception and responses to therapy. Dutton and colleagues35 recently applied a 

modified composite multifactorial pain scoring system that includes components of the Obel 

Grading System and the Glasgow composite pain scale in a horse suffering from severe persistent 

foot pain (Table 1). As the authors emphasize multiple observers produced consistently similar 

scores when assessing the pain state in the horse and changes in scores tightly followed responses to 

analgesic treatment and progress in the disease process. To objectively assess and quantify pain 

(lameness) in acute and chronic laminitis, force plate systems have been used for measuring ground 

reaction forces and other force parameters and to identify changes in limb-load distribution pattern 

that reflect changes in the disease process and responses to treatment.36,37  

 

PAIN THERAPY IN LAMINITIS: MODIFYING THE APPROACH 

Until	   very	   recently	   pain	   therapy	   in	   acute	   and	   chronic	   laminitis	   has	   largely	   been	   based	   on	   the	   proposed	  

etiopathogenetic	   mechanisms	   underlying	   the	   disease	   (i.e.	   vascular	   or	   thromboembolic	   ischemia;	  

inflammatory;	  metabolic;	  enzymatic	  and	  biomechanical	  mechanisms)	  and	  consisted	  predominantly	  of	  anti-‐

inflammatory	   drug	   administration.38-‐48	   In	   the	   acute	   phase	   this	   therapy	   was	   often	   combined	   with	   other	  

medications	   (e.g.,	   acepromazine,	   pentoxifylline,	   isoxuprine,	   heparin,	   acetyl	   salicylic	   acid,	   nitroglycerin,	  



dimethyl	  sulfoxide)	  addressing	  suspected	  ischemia	  and	  reperfusion	  injury	  (oxidative	  damage)	  in	  the	  dermal-‐

epidermal	   lamellae,	   yet	   with	   conflicting	   results.39-‐43,45,46-‐48	   This	   traditional	   approach	   failed	   to	   control	   the	  

multifactorial	  pain	   in	  horses	  with	  chronic	   laminitis,	  because	  pain	  has	  been	  considered	  only	  a	  symptom	  of	  

laminitis	   rather	   than	   a	   pathological	   entity	   in	   itself.	   It	   is	   the	   abnormal	   neural	   signal	   processing	   due	   to	  

damage	   to	   tissues	   (inflammatory	   pain)	   and	   nervous	   structures	   (neuropathic	   pain),	   and/or	   abnormal	  

function	  of	   the	  nervous	   system	  as	   a	  whole	   (functional	   pain)	   that	   over	   the	   course	  of	   the	  disease	  process	  

causes	   a	   state	   of	   nociception	   that	   is	   commonly	   referred	   to	   as	   pathological	   or	   maladaptive	   pain.30,49	  

Conventional	   non-‐steroidal	   anti-‐inflammatory	   (NSAID)	   and	   other	   medications	   may	   not	   or	   only	   partially	  

target	   the	  neuropathophysiological	  mechanisms	  described	   in	  detail	   above.15,16,29,32	   Therefore,	   shifting	   the	  

focus	  towards	  a	  more	  holistic	  strategy	  aimed	  at	  preventing	  maladaptive	  pain	  or	  at	  least	  reducing	  the	  risk	  of	  

its	  occurrence	  appears	  to	  be	  more	  indicated.28,32,35	  This	  concept	  follows	  the	  notion	  that	  i)	  events	  leading	  to	  

acute	   pain,	   peripheral	   and	   central	   hyperalgesia,	   neuropathic	   pain,	   with	   or	   without	   allodynia	   occur	  

simultaneously	  and	  are	  interrelated;	  ii)	  drugs	  may	  exhibit	  a	  specific	  activity	  against	  only	  certain	  components	  

of	  the	  pain	  syndrome;	  iii)	  early	  integration	  of	  drugs	  with	  anti-‐hyperalgesic	  or	  anti-‐neuropathic	  pain	  activity	  

into	  the	  treatment	  plan	  promises	  to	  reduce	  the	  risk	  of	  maladaptive	  pain	  development;	  and	  iv)	  loco-‐regional	  

analgesia	  techniques	  help	  suppressing	  the	  occurrence	  of	  hyperalgesia	  and	  neuropathic	  pain.32	  Accordingly,	  

effective	  pain	  management	  in	  horses	  with	  laminitis	  favors	  a	  multi-‐modal	  approach	  that	  involves,	  from	  the	  

beginning,	   a	   combination	   of	   drugs	   with	   different	   pharmacological	   mechanisms	   of	   action	   and	   different	  

target	   sites	  within	   the	   somatosensory	   neural	   conduit	   (Figure	   1).	   This	   concept	  may	   also	   include	   podiatric	  

care,	   electrotherapy,	   tenotomy	   or	   botulinum	   toxin-‐induced	   relaxation	   of	   the	   deep	   digital	   flexor	   tendon,	  

physical	   therapy,	   and	   other	   complementary	   modalities	   of	   treatment,	   most	   of	   them	   aimed	   at	   altering	  

biomechanical	   forces	   on	   the	   affected	   digit	   with	   decreased	   foot	   pain	   perception	   and	   improved	  

recovery.32,35,41,42,44,45,50-‐54	  	  

To	  have	  sustainable	  success	  pain	  therapy	  in	  the	  horse	  with	  chronic	  laminitis	  has	  to	  accomplish	  multiple	  

goals:	   i)	   reduction	  of	  nociceptive	  signal	  generation	   in	  sensory	  nerve	  terminals	   (NSAIDs,	  podiatric	  care);	   ii)	  

suppression	  of	  peripheral	  hyperalgesia	  (NSAIDs,	  local	  anesthesia	  and	  analgesia);	  iii)	  Inhibition/prevention	  of	  

afferent	   nociceptive	   signal	   transmission	   to	   the	   central	   nervous	   system	   (loco-‐regional	   analgesia);	   iv)	  

inhibition	  of	  spinal	  nociceptive	  signal	  transmission	  and	  central	  hyperalgesia	  development	  ([epidural/spinal:	  

local	   anesthetics,	   opioids,	   α2	   agonists],	   [systemic:	   opioids,	   α2	   agonists,	   ketamine,	   NSAIDs,	   gabapentin,	  

pregabalin])	  and	  v)	  prevention	  and/or	   inhibition	  of	  neuropathic	  pain	  (systemic	   lidocaine,	  opioids,	  NSAIDS,	  

gabapentin,	  pregabalin).	  Multi-‐modal	  pain	  therapy	   is	  mechanism	  driven	  and	  should	  be	  evidence	  based.	   It	  



represents	  a	  concept	  that	  is	  very	  open	  and	  allows	  new	  drugs	  and	  techniques	  to	  be	  included	  as	  they	  become	  

available.	  	  

As	   mentioned	   before,	   neither	   pathological	   mechanisms	   leading	   to	   nor	   treatment	   of	   sensory	  

hyperalgesia	   and	   neuropathic	   pain	   have	   yet	   been	   studied	   in	   detail	   in	   horses.	   At	   this	   stage,	   the	   equine	  

veterinarian	  must	   rely	  primarily	  on	  experimental	  animal	  data	  and	  experiences	   in	  human	  medical	  practice	  

when	  developing	  an	  analgesic	  regimen	  for	  the	  horse	  with	  chronic	  foot	  pain.	  There	  are	  a	  number	  of	  lessons	  

to	  be	  learnt	  from	  experiences	  with	  neuropathic	  pain	  therapy	  in	  the	  human	  patient:	  i)	  symptoms	  described	  

by	  patients	  are	  many,	   including	  those	  listed	  in	  Table	  2,	  and	  therefore	  the	  diagnosis	  of	  neuropathic	  pain	  is	  

often	   challenging	   and	   diagnostic	   criteria	   are	   still	   evolving;	   ii)	   rarely,	   if	   ever,	   can	   one	   single	  

pathophysiological	   mechanism	   be	   claimed	   responsible	   for	   generating	   and	  maintaining	   the	   symptoms	   of	  

neuropathic	  pain;	  iii)	  individual	  variation	  in	  the	  response	  to	  anti-‐neuropathic	  pain	  medications	  is	  substantial	  

and	   unpredictable,	   thus	   favoring	   a	   stepwise	   process	   intended	   to	   identify	   the	  medication	   (or	  medication	  

combination)	  that	  provides	  the	  greatest	  pain	  relief	  and	  fewest	  side	  effects	  while	  discontinuing	  drugs	  lacking	  

an	  analgesic	  effect;	  iv)	  currently	  first	  line	  medications	  for	  neuropathic	  pain	  cannot	  be	  ranked	  by	  degree	  of	  

efficacy;	   v)	   no	   more	   than	   40-‐60	   %	   of	   patients	   with	   neuropathic	   pain	   will	   respond	   favorably	   to	  

pharmacological	  treatments.55-‐59	  

Whatever	   pharmacological	   or	   other	   approach	   and	   technique	   is	   chosen	   in	   an	   individual	  multi-‐modal	  

protocol,	  the	  ultimate	  objective	  is	  to	  achieve	  optimum	  pain	  control	  during	  each	  phase	  of	  laminitis,	  while	  at	  

the	  same	  time	  minimizing	  the	  risk	  of	  negatively	  affecting	  the	  disease	  process	  itself	  or	  causing	  side	  effects	  of	  

drug	  therapy.32	  	  
	  



Conventional systemic analgesics  

Three different pharmacological classes of drugs are commonly administered systemically to treat 

pain in horses affected with laminitis: NSAIDs, opioids and lidocaine. As described in more detail 

below, these drugs have also the potential to ameliorate nociceptive processes involved in the 

development of hyperalgesia and neuropathic pain. 
 

NSAIDs 

The backbone of any pharmacological pain therapy in laminitis has been and continues to be 

treatment with NSAIDs (Table 3). Evidence of increased cyclooxygenase (primarily COX-2) 

expression, leucocyte migration, and cytokine production in the developmental and acute phases of 

laminitis as outlined above indicated a role for these agents, optimally prior to the onset of 

lameness. However, there is increasing evidence to suggest that commonly administered NSAIDs 

such as phenylbutazone, flunixine meglumine, ketoprofen, and naproxen do not mediate their 

effects through antiinflammatory action (i.e. prostanoid synthesis inhibition) in the affected dermo-

epidermal hoof tissues but instead produce analgesia primarily by inhibition of central sensory 

neurons through COX-dependent and other independent mechanisms.40,43,46,60 First, administration 

of NSAIDs during the developmental stage, when COX-2 expression is upregulated, does not seem 

to prevent acute laminitis or alter the course of the disease arguing against a dominant 

antiinflammatory action.61 Second, increased prostaglandin activity has not been detected in the 

acute and chronic phases of laminitis despite evidence for ongoing inflammation,8,9,21,25 supporting 

the notion that if NSAIDS exhibit antiinflammatory activity at high doses this effect may not be 

related to inhibition of prostanoid synthesis.43,46 Third, unlike in peripheral tissues, where COX-1 is 

constitutively present for tissue homeostasis and COX-2 is inducible by inflammation,62 both COX 

isoforms are constitutively present in the CNS but with functionally different roles.63,64  

While NSAID administration in higher doses with antiinflammatory activity may be desirable in 

the very early (developmental) stage of laminitis, in the acute phase persistent and very effective 

pain relief from NSAIDs must be balanced against the risks of exacerbated structural damage due to 

excessive movement and limb loading of the horse,40,47 and thus the dose should be titrated based 

on the comfort level of the animal. In horses with chronic laminitis, effective analgesia frequently 

calls for high doses of NSAIDs and an effect may still not be seen for up to 3 days after initiation of 

treatment.40 This must be considered when assessing the clinical response to NSAIDs.  



The previously held belief that more COX-2 preferential (meloxicam, Metacam®; etodolac, 

Etogesic®) or even COX-2 selective NSAIDS (firocoxib, Equioxx®) are therapeutically superior has 

been challenged recently.65-67 New laboratory data indicate that suppression of inflammation-

evoked central nociceptive activity and hyperalgesia by NSAIDs may be related to the selectivity 

for COX isoforms since COX-2 seems to be only involved in the initiation but not necessarily the 

maintenance of nociceptive spinal neuron activation, which may largely depend on COX-1.64 In 

contrast, in the absence of peripheral inflammation spinally initiated hyperalgesia has been shown 

to be mediated exclusively by constitutive COX-2 likely localized within the spinal cord dorsal 

horn, which argues for a prominent indication of selective COX-2 inhibitors as antihyperalgesic 

agents under circumstances of non-inflammation dependent central nociceptive sensitization.63 

Under the premise of inflammation being the common pathological denominator2 and hence the 

trigger for increased spinal sensory nerve excitability in all forms of laminitis, these laboratory 

findings suggest the use of non-selective NSAIDs as more effective candidates for analgesic 

therapy in laminitis. This idea is supported by two observations: i) among clinicians the non-

selective COX inhibitor phenylbutazone is considered the most potent and most consistent pain 

relieving NSAID in laminitis;47,60,67 and ii) only ketoprofen (3.63 mg/kg), a slightly COX-1 

preferential NSAID,68 may reduce foot pain to a greater extent than phenylbutazone (2.2 mg/kg).69 

Interestingly, the stereoisomers of ketoprofen are known to exert antinociceptive actions also 

through mechanisms other than COX inhibition. The R(-)-enantiomer of ketoprofen suppresses 

tactile allodynia via a yet to be defined mechanism of action and the S(+)-enantiomer produces 

analgesia through mechanisms involving serotoninergic pathways both at the spinal and supraspinal 

level.70,71 In addition, ketoprofen has been demonstrated to exert antihyperalgesic activity in dairy 

cows suffering from unilateral hindlimb lameness.72 

A risk of toxicity must be anticipated in animals receiving protracted courses of NSAID 

treatment.65,67,73 Of interest, NSAIDs have been shown in-vitro to slightly potentiate MMP 

activation,47 which cautions against an indiscriminate use in the early stages of laminitis. Currently 

most widely used NSAIDs are non-selective and may cause multiple adverse effects (i.e. right 

dorsal colitis, gastric ulceration, and renal tubular necrosis) through inhibition of COX-1. This 

applies particularly to phenylbutazone which has a longer elimination half life and thus accumulates 

more extensively in tissues than other non-selective NSAIDs.44,73 Therefore, their use may need to 

be restricted in horses with compromised gastro-intestinal or renal functions or in dehydrated 

animals, and in ponies that are more susceptible to toxic effects of NSAIDs.43,46,74 In those cases 



COX-2 preferential/selective agents and ketoprofen, that have a more favorable side effect profile 

compared to phenylbutazone and flunixine meglumine, may be better choices to treat persistent pain 

in laminitis.75,76   

 

OPIOIDS 

Opioids	   (Table	  4)	  are	  generally	   indicated	   in	  moderate	   to	  severe	  pain,	  however,	   their	  analgesic	  efficacy	   in	  

horses	   compared	   to	   other	   species	   is	   less	   well	   defined,	   especially	   when	   used	   in	   clinically	   common	  

doses.60,77,78	  At	  higher	  doses	  known	  to	  produce	  significant	  analgesia	  or	  antinociception	  (e.g.,	  butorphanol,	  

methadone,	  or	  morphine	  ≥	  0.1	  mg/kg)	  opioids	  commonly	  provoke	  central	  excitatory	  responses,	   requiring	  

combination	  with	  sedatives	  such	  as	  acepromazine	  or	  α2	  agonists	  (Table	  4).60,77,78	  In,	  addition,	  they	  decrease	  

gastrointestinal	   motility	   and	   cause	   colon	   impaction,	   thus	   limiting	   their	   long-‐term	   use	   in	   animals	   with	  

chronic	  laminitis.	  Combining	  lower	  doses	  of	  µ-‐opioids	  with	  low	  doses	  of	  α2	  agonists	  (preferably	  in	  the	  form	  

of	  a	  constant	  rate	   infusion	  [CRI])	  may	  help	  achieve	  a	  desired	   level	  of	  analgesia	  by	  making	  use	  of	  the	  well	  

known	   analgesic	   synergism	   between	   the	   two	   drug	   classes,	  while	   avoiding	   the	   profound	   CNS	   stimulatory	  

effects	  of	  the	  opioids	  and	  hemodynamic	  effects	  of	  the	  α2	  agonists	  (Table	  4).78	  However,	  impaired	  intestinal	  

motility,	   caused	  by	  both	  opioids	   and	  α2	   agonists,	   remains	   a	   concern	  with	   long-‐term	   treatment.	  Whether	  

opioids	   elicit	   less	   CNS	   stimulatory	   effects	   and	   are	   therapeutically	   more	   effective	   in	   horses	   experiencing	  

severe	   pain	   is	   controversial	   because	   scientific	   evidence	   is	   lacking.79	   Controlled	   trials	   in	   human	   patients	  

revealed	   efficacy	   of	   opioids	   against	   peripheral	   neuropathic	   pain	   and	   some	   components	   of	   central	  

neuropathic	  pain.56,57	  However,	  there	  is	  also	  laboratory	  animal	  and	  human	  clinical	  evidence	  that	  long-‐term	  

use	   of	   µ	   opioid	   agonists	   such	   as	   morphine	   can	   trigger	   the	   development	   of	   a	   state	   of	   opioid	   induced	  

hyperalgesia	   (OIH)	   whereby	   a	   subject	   receiving	   opioids	   for	   the	   treatment	   of	   pain	   may	   actually	   become	  

more	  sensitive	  to	  pain.80-‐82	  This	  potentially	  profound	  adverse	  effect	  should	  be	  considered	  when	  prescribing	  

long-‐term	  opioid	   therapy	   in	  horses	  with	   chronic	   laminitis,	   even	   if	   the	  mechanisms	   leading	   to	  OIH	  and	   its	  

clinical	  relevance	  are	  still	  being	  debated,	  and	  the	  phenomenon	  is	  not	  described	  in	  horses.83	  	  	  

Butorphanol	  (Torbugesic®),	  a	  κ	  opioid	  receptor	  agonist	  and	  µ-‐receptor	  antagonist,	  is	  probably	  the	  most	  

widely	  used	  opioid	   in	  horses.	  The	  drug’s	  short	  half-‐life	   limits	   its	  use	  as	  analgesic	   in	   laminitis,	  calling	  for	   	  a	  

CRI	   to	  achieve	  persistent	  analgesia.84,85	  Transdermal	  administration	  of	   fentanyl	   (Duragesic®),	  a	  potent	  but	  

very	   short-‐acting	   synthetic	   µ-‐opioid	   receptor	   agonist,	   has	   been	   found	   to	   not	   consistently	   alleviate	  

musculoskeletal	  pain.86,87	  If	  fentanyl	  patches	  were	  to	  be	  used	  as	  part	  of	  the	  multimodal	  pain	  management	  

one	   should	   probably	   apply	   at	   least	   as	   many	   patches	   as	   necessary	   to	   achieve	   plasma	   fentanyl	   levels	  



generally	  considered	  to	  be	  analgesic	  in	  other	  species	  (i.e.	  ≥	  1	  ng/mL).88	  Buprenorphine	  (Buprenex®)	  is	  a	  µ-‐

opioid	  agonist	  and	  κ-‐opioid	  antagonist,	  which	  has	  been	  claimed	  to	  have	  a	  ceiling	  effect.77	  When	  applied	  as	  

a	   sole	   analgesic	   agent	   in	   horses,	  measurable	   antinociception	   has	   been	   reported	   to	   occur	   at	   doses	   of	   10	  

µg/kg	  or	   higher	   but	   significant	   excitement	   and	  hemodynamic	   stimulation	  were	  noted	   as	  well.89	  Walker90	  

reported	   recently	   about	   experience	   with	   a	   5-‐day	   administration	   of	   buprenorphine	   in	   a	   filly	   with	   severe	  

head	  and	  neck	  trauma	  choosing	  the	  sublingual/buccal	  mucosal	  route.	  The	  drug	  provided	  clinically	  effective	  

analgesia,	  when	  given	  twice	  daily,	  without	  provoking	  signs	  of	  excitement.	  

 

SYSTEMIC LIDOCAINE 

The clinical use of systemic lidocaine for pain treatment in humans was first reported almost five 

decades ago,91 and during the past 10 years has gained much popularity also in equine 

practice.32,78,92-95 The drug must be administered as CRI due to its short half-life.96 A loading dose 

of 1.3 to 1.5 mg/kg administered IV over 15 minutes (min) followed by a CRI of 50-100  

µg•kg-1•min-1 is most commonly used.78,79 Data regarding the immediate analgesic effect of 

lidocaine on spontaneous (not evoked) pain in animals or patients are somewhat inconsistent when 

infused at clinically common doses,78,91,97,98 and higher doses carry the risk of cardio- and 

neurotoxicity.86,94 Since plasma concentrations achieved during long-term infusion vary widely 

among horses and may accumulate over time,78,95,96,100,101 monitoring of plasma levels (via a 

lidocaine ELISA kit; Neogen Corporation, Lansing, MI 48912, USA) is recommended, not only to 

avoid toxicity but also to ensure that analgesically effective concentrations (approx. ≥ 1 µg/mL)91,95 

are being achieved.  

Information available to date indicates that the analgesic action of IV lidocaine is far more 

complex than previously thought. Besides its well studied local anesthetic actions (i.e. Na+ channel 

blockade) in the peripheral and central nervous system, it also exerts multiple other mechanisms of 

action that target the nociceptive system (spinal and supraspinal).102-104 Both laboratory animal and 

controlled clinical trials in humans have found IV lidocaine to suppress development of peripheral 

hyperalgesia as well as central nociceptive sensitization and allodynia.103-107 Its efficacy as an 

analgesic and anti-neuropathic agent has recently been demonstrated in adult patients suffering from 

chronic pain with tactile hyperalgesia and/or mechanical allodynia for more than 3 months as a 

result of a peripheral nerve injury.98 In this trial98 IV lidocaine failed to produce an alleviation of the 

spontaneous pain the patients were suffering from the nerve injury, similar to findings in a previous 



study from the same investigator group.97 However it is also reported elsewhere that systemic 

lidocaine inhibits spontaneous pain.91,107  

In	  addition	  to	   its	  analgesic	  and	  antihyperalgesic/anti-‐neuropathic	  properties	  described	  above	   lidocaine	  

also	   has	   inflammation	   modifying	   effects	   and	   has	   been	   shown	   to	   protect	   tissues	   against	   ischemic	   and	  

reperfusion	   injuries	   in	   various	   species	   including	   the	   horse,108-‐112	   which	   may	   all	   have	   a	   direct	   or	   indirect	  

impact	  on	  the	  laminitis	  disease	  process	  and	  thus	  related	  nociceptive	  mechanisms	  and	  pain	  perception.	  	  

 



Non-conventional systemic analgesics with anti-hyperalgesic and anti-neuropathic pain 

activity  

Three evidence-based consensus guidelines for the pharmacologic treatment of neuropathic pain 

have been published recently in the human medical literature.57-59 These guidelines all recommend 

tricyclic antidepressants (not tested in the equine species) and calcium channel α2δ ligands 

(gabapentin, pregabalin) as first-line treatments for patients with neuropathic pain. They suggest 

reserving opioid analgesics and N-methyl-D-aspartate (NMDA) receptor antagonists as second- or 

third-line options in most cases, despite evidence of efficacy in certain forms of hyperalgesia and 

neuropathic pain.58 In two of the guidelines topical lidocaine was recommended as a first-line 

treatment for patients with localized peripheral neuropathic pain.57-59  
 

CALCIUM CHANNEL α2δ-LIGANDS (GABAPENTIN, PREGABALIN) 

The anticonvulsant drugs gabapentin and pregabalin both bind with high affinity to the α2δ-

1 subunit of voltage-gated calcium channels in the spinal cord and brain.114 As a result neuronal 

calcium currents are inhibited, ultimately causing a change in the release of neurotransmitters 

within the CNS such as glutamate, GABA, norepinephrine, and SP; these actions account for much 

of the analgesic activity of these compounds.115,116 The expression of the α2δ-1 subunit has been 

shown to increase in chronic pain states, as well as in both afferent sensory neurons and in the 

spinal cord dorsal horn in experimental neuropathic pain models.117,118 This correlates well with the 

observation that gabapentin exerts analgesic properties primarily in sensitized or hyperalgesic 

states.119,120,121 More recently gabapentin and pregabalin have been used clinically in humans to 

treat a variety of neuropathic pain states and early post-surgical pain, often but not always with 

success.55-59,122 These drugs appear especially effective in patients with paroxysmal pain 

(lancinating/shooting pain), brush-induced allodynia and cold-induced allodynia/hyperalgesia, in 

whom it significantly lowers pain scores.123 Laboratory animal data suggest the α2δ-ligands also 

have activity against opioid-induced hyperalgesia.124  

Documented therapeutic use in horses refers only to oral (PO) administration of gabapentin 

(Neurontin®) in two animals which were thought to exhibit signs of neuropathic pain, one in 

conjunction with acute femoral nerve injury post-surgery and one with a history of white line 

disease and chronic laminitis.35,125 Lacking information on pharmacokinetic properties of the drug 

in the equine at that time, gabapentin doses were extrapolated from use in other species (2.5 mg/kg 



at intervals of 8, 12 or 24 hrs;124 2.0-3.3 mg/kg at intervals of 8 or 12 hrs35). In the meantime two 

studies have been conducted in horses investigating the drug’s pharmacokinetic properties as well 

as behavioral and cardiovascular parameters after IV and PO administration.126,127 After IV (over 30 

min) and PO administration of gabapentin (20 mg/kg), the median elimination half-lives were 8.5 

and 7.7 hrs, respectively which correspond well with data in other species.126 After IV 

administration plasma gabapentin concentrations remained above the 3-4 µg/mL range for 

approximately 15 hrs, similar to the dose associated with significant analgesic effects in adult 

human volunteers.128 In the horse, oral bioavailability of gabapentin is relatively poor (~ 16 %) and 

therefore plasma gabapentin concentrations decreased much more rapidly than after IV drug 

administration (i.e. within 2-3 hrs) below the analgesic threshold. Neither route of gabapentin 

administration was associated with effects on heart rate, rhythm or blood pressure, nor pronounced 

central nervous effects, which concurs in other species.127 Further research is required to establish a 

dosage that will provide effective analgesia in horses with chronic laminitis and to determine if 

combinations with other agents create an enhanced effect. 
 

KETAMINE 

Peripheral sensory nerve stimulation leads to activation of the ligand-gated ion channel complex 

known as N-methyl-D-aspartate (NMDA) receptors on the postsynaptic membrane in the dorsal 

horn of the spinal cord. Release of NMDA, a modulating neurotransmitter, is coupled with 

subsequent release of the excitatory neurotransmitter glutamate.22 The resultant extended 

depolarization of sensory neurons produces much larger than usual postsynaptic potentials, known 

as synaptic potentiation, a key component of central hyperalgesia as well as synaptic plasticity 

leading to chronic pain.22,129,130  

Ketamine is an NMDA receptor antagonist.131,132 At subanesthetic doses (100-150 µg/kg as 

initial bolus followed by a CRI of 60-120 µg•kg-1•hr-1) it blocks NMDA receptors, thereby 

modulating central sensitization induced both by tissue damage.133-137 Ketamine exhibits synergism 

with classical analgesics such as opioids, NSAIDs, local anesthetics and α2 agonists; therefore it 

reduces opioid analgesic consumption and increases analgesic quality.135-137 Ketamine is used 

primarily as an antihyperalgesic and anti-allodynic compound in human patients at risk of 

developing maladaptive pain after major tissue damage and not primarily as an analgesic agent per 

se.138 



Clinical effects of subanesthetic ketamine infusion (400 and 800 µg•kg-1•hr-1) have been studied 

in awake horses.139 During or following the 12 hr infusion no analgesic effects could be 

demonstrated and no signs of excitement or significant changes in measured physiological variables 

occurred. A CRI of 400-1500 µg•kg-1•hr-1 has been used safely in conscious horses.140 However, 

with both infusion regimens the measured plasma ketamine concentrations were about 10 times 

below concentrations (2-4 µg/mL) associated with measurable acute antinociceptive effects.141 

Matthews et al.142 administered ketamine via infusion (400 and 800 µg•kg-1•hr-1) for up to 5 days in 

eight horses with osteomyelitis, septic joint disease, burns, or colic in a search for possible analgesic 

effects. Responses to ketamine varied substantially with some showing any or only slight 

improvements of pain symptoms, while others appeared to be markedly more comfortable within 6 

to 12 hrs of the start of drug infusion. Thus, in horses as in humans, low dose ketamine infusion 

should be considered an adjunctive therapy for treating central hyperalgesia.  

 

Loco-regional anesthesia and analgesia 

The neuropathophysiological processes leading to the development of central hyperalgesia, 

neuropathic pain and allodynia are primarily triggered by increased spontaneous firing activity in 

ascending sensory nerve fibers during the first 4-5 days following peripheral nerve injuries.143-145 

Experimental evidence and clinical experiences in human medicine indicate that central 

hyperalgesia can be obliterated by no other treatment modality as effectively as by loco-regional 

anesthesia and analgesia aimed at interrupting or diminishing impulse trafficking from the site of 

tissue injury to the CNS and within the dorsal horn of the spinal cord.56,59,78,143-147 Those techniques 

may include wound infiltration or joint injections with local anesthetics, topical local anesthetic 

application using lidocaine patches, repetitive or even better continuous peripheral nerve blocks, 

and epidural or intrathecal anesthesia and analgesia.  

Continuous peripheral nerve blockade (CPNB) is a treatment modality that has been long 

introduced in human medicine and is currently widely applied in orthopedic and trauma surgery. 

The technique entails continuous or intermittent low-dose administration of local anesthetics via 

catheters placed along peripheral nerves, thus providing persistent pain control while reducing the 

need of systemic medications.148 A technique for percutaneous placement of catheters along the 

palmar nerves in the standing, sedated horse was recently developed and provides a method for 

repeated or continuous perineural administration of low concentrated local anesthetic solutions (e.g. 

bupivacaine or ropivacaine 0.125-0.25 %) over a period of multiple days.148,149  The therapy can 



continue for longer periods by exchange catheters every 4-8 days. With this technique significant 

pain relief can be obtained in horses refractory to systemic analgesic therapy and therefore suffering 

from unrelenting pain during a period of early or active chronic laminitis.149 The technique offers 

the advantage of titrating the analgesic effect by adjusting the concentration of the local anesthetic 

solution and/or the rate of drug administration to a desired level of comfort without causing 

complete sensory blockade. The CPNB catheters can also be placed more proximal on the limb in 

close proximity of the ulnar and median nerves.150 This technique may serve as an alternative for 

providing significant reduction of pain perception in the distal forelimb.150 However, the use of 

either CPNB technique in the acute phase of laminitis is controversial and warrants further clinical 

study. A pronounced nociceptive blockade of the affected limb will allow the horse to increase the 

load on the foot and potentially exacerbate the disruption of the lamellar dermal-epidermal bond.  

In horses experiencing severe pain due to chronic laminitis in their hindlimb(s) caudal epidural 

administration of analgesics such as opioids (e.g. morphine 0.1-0.2 mg/kg), α2 agonists (e.g. 

xylazine 0.17 mg/kg; detomidine 20-30 µg/kg) or a combination thereof with or without low (i.e. 

motor function not compromising) doses of local anesthetic (e.g. bupivacaine or ropivacaine 0.125-

0.25 %) provides long-term pain control.151 To allow repeated drug administration it is 

recommended to place an epidural catheter.151 Medications may be administered in form of 

intermittent boluses (15-30 mL) or as an infusion (0.5-3.0 mL/hr). As with the CPNB techniques 

similar restrictions apply to the use of epidural analgesia in the acute phase of laminitis. 

 

SUMMARY 

Managing pain in horses with chronic laminitis is often challenging as the disease process triggers a 

cascade of events that turns the somatosensory nervous system into a state of nociceptive 

hyperactivity with abnormal impulse processing often unresponsive to classic anti-inflammatory 

drug treatment. Appreciating this maladaptive pain state as the product of complex 

neuropathological processes affecting both the peripheral and central somatosensory nervous 

system is crucial when devising a treatment plan for horses afflicted by chronic laminitis. Effective 

analgesia calls from the outset for a multi-modal approach that involves a combination of agents 

with different pharmacological mechanisms of action targeting different sites within the nociceptive 

system and requires both systemic and local/regional drug administration. A pain grading system 

should be applied that allows for objective pain assessment and close monitoring of changes in 

nociception as a result of disease progress and/or response to analgesic therapy. 
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	  Table	  1:	  Modified	  composite	  pain	  score	  (MCPS).35	  

Dynamic	  score:	  Modified	  Obel	  Grading	  System	  

Grade	  
Descriptor	  

1	   Frequent	  shifting	  of	  weight	  between	  the	  feet	  with	  no	  discernible	  lameness	  at	  the	  walk.	  

2	   Does	  not	  resist	  having	  a	  foreleg	  lifted,	  is	  not	  reluctant	  to	  walk,	  but	  does	  show	  lameness	  at	  

the	  walk.	  

3	   Resists	  having	  a	  foreleg	  lifted	  and	  is	  reluctant	  to	  walk.	  

4	   Walks	  only	  if	  forced.	  

Static	  score:	  Modified	  from	  Glasgow	  composite	  scale	  

Score	   Descriptor	  

1	   No	  pain	  or	  distress:	  normal	  behaviour.	  

2	   Mild	  pain:	  irritable,	  restless,	  decreased	  appetite.	  

3	   Mild	  pain:	  2	  plus	  resists	  handling.	  

4	   Mild-‐moderate	  pain:	  3	  plus	  standing	  in	  back	  of	  stall	  or	  with	  back	  to	  stall	  door.	  

5	   Moderate	  pain:	  4	  plus	  camped-‐out	  legs,	  increased	  digital	  pulses.	  

6	   Moderate-‐severe	  pain:	  5	  plus	  frequent	  recumbency,	  HR	  >	  44	  beats/min,	  and/or	  RR	  >	  24	  

breaths/min.	  

7	   Moderate-‐severe	  pain:	  6	  plus	  sweating,	  muscle	  fasciculation,	  head-‐tossing.	  

8	   Severe	  pain:	  7	  plus	  unwilling	  to	  move.	  

9	   Severe-‐extreme	  pain:	  8	  plus	  not	  weight	  bearing	  when	  standing.	  

10	   Extreme	  pain:	  9	  or	  entirely	  recumbent,	  bordering	  on	  agonal.	  

Maximum	  possible	  score:	  14	  	  



Table	  2:	  Sensory	  symptoms	  and	  signs	  associated	  with	  neuropathic	  pain.55	  

Symptom	  or	  sign	   Description	  

Allodynia	   Pain	  due	   to	  non-‐noxious	   stimuli	   (e.g.	   light	   touch)	  when	  applied	   to	   the	  affected	  

area.	  May	  be	  mechanical	  (eg,	  caused	  by	  light	  pressure),	  dynamic	  (caused	  by	  non-‐

painful	  movement	   of	   a	   stimulus),	   or	   thermal	   (caused	   by	   non-‐painful	   warm,	   or	  

cool	  stimulus).	  	  

Anesthesia	   Loss	  of	  normal	  sensation	  to	  the	  affected	  region.	  

Hyperalgesia	   Exaggerated	   response	   to	   a	   mildly	   noxious	   stimulus	   applied	   to	   the	   affected	  

region.	  

Hyperpathia	   Delayed	   and	   explosive	   response	   to	   a	   noxious	   stimulus	   applied	   to	   the	   affected	  

region	  

Referred	  pain	   Occurs	  in	  a	  region	  remote	  from	  the	  source	  of	  stimulation.	  

	  



Table	  3:	  Doses	  of	  commonly	  used	  non-‐steroidal	  antiinflammatory	  drugs	  (NSAIDs)	  in	  horses.	  

Non-‐Steroidal	  Anti-‐

Inflammatory	  Drug	  

Dose,	  route	  &	  interval	  of	  drug	  

administration*	   	  	  

Comments	   References	  

Non-‐selective	  COX-‐1	  &	  2	  inhibitors	  

	   Phenylbutazone	   2.2-‐4.4	  (up	  to	  6)	  mg/kg	  IV/PO	  

SID-‐BID	  

Highest	  toxicity	  

among	  NSAIDs	  

43,44,47,55,	  

62,64,68,73	  

	   Flunixine	  meglumine	   1.1	  mg/kg	  IV/PO	  SID-‐BID	   Cases	  of	  muscle	  

necrosis	  reported	  

with	  IM	  injection	  

47,68,73	  

	   Ketoprofen	   2.2-‐3.6	  mg/kg	  IV/IM	  SID-‐QID	   Only	  parenteral	  

administration	  

55,64,68,73	  

	   Vedaprofen	   1-‐2	  mg/kg	  IV/PO	  SID-‐BID	   Limited	  experience	   73,74	  

	   Eltenac	   0.5-‐1	  mg/kg	  IV	  SID	   Limited	  experience	   68,	  73,74	  

	   Naproxen	   5	  mg/kg	  IV	  	  

10	  mg/kg	  PO	  SID	  

Initially	  slow	  IV	  

bolus,	  then	  PO	  

73	  

Preferential	  or	  selective	  COX-‐2	  inhibitors	  

	   Meloxicam	   0.6	  mg/kg	  IV/PO	  SID-‐BID	   	  	   	   68,	  73,74	  

	   Etodolac	   10-‐20	  mg/kg	  IV/PO	  SID-‐BID	   	   Limited	  experience	   68,73	  

	   Firocoxib	   0.1	  mg/kg	  PO	  SID	   May	  require	  0.3	  

mg/kg	  on	  1st	  day	  of	  

administration	  

69,70,73	  

Routes	  and	  intervals	  of	  drug	  administration:	  IV,	  intravenous;	  IM,	  intramuscular;	  PO,	  per	  os;	  SID,	  once	  daily;	  

BID,	  twice	  daily;	  TID,	  three	  times	  daily.	  *Caution:	  More	  rapid	  metabolism	  and	  elimination	  of	  most	  NSAIDs	  in	  

mules	  and	  donkeys	  may	  require	  more	  frequent	  dosing.62	  	  



Table	  4:	  Doses	  of	  opioids	  and	  co-‐administered	  sedatives	  in	  horses.	  

Drug	   Dose,	  route	  &	  interval	  of	  drug	  administration	   	   References	  

Opioids	  

	   Morphine	   0.1-‐0.2	  mg/kg	  IV/IM	  every	  4-‐6	  hrs	   73,74	  

	   Methadone	   0.1-‐0.2	  mg/kg	  IV/IM	  every	  4-‐6	  hrs	   73,74	  

	   Butorphanol	   0.01-‐0.	  4	  mg/kg	  IV,	  IM	  every	  2-‐4	  hrs1	  

Bolus	  of	  18	  µg/kg	  bolus	  followed	  by	  IV	  CRI	  at	  13-‐24	  µg•kg-‐1•hr-‐

1	  

55,72,73,74,	  

79,80	  

	   Buprenorphine	   5-‐20	  μg/kg	  IV/IM	  TID	  

6	  μg/kg	  sublingual	  BID	  

73,84,85	  

	   Fentanyl	   2-‐3	  10	  mg	  (100	  µg/hr)	  patches	  to	  be	  changed	  every	  3	  days	   81,82,83	  

Co-‐administered	  phenothiazine	  and/or	  α2	  agonist	  sedative/analgesic	  

	   Acepromazine3	   0.01-‐0.08	  mg/kg	  IV/IM/SC	  BID/TID	  or	  	  

CRI	  at	  2-‐4	  µg•kg-‐1•hr-‐1	   	  	  

41,47,48	  

	   Detomidine	   10-‐40	  μg/kg	  IM/IV	  every	  2-‐4	  hrs	  

Bolus2	  of	  5-‐10	  μg/kg	  IV	  followed	  by	  CRI	  at	  24-‐36	  µg•kg-‐1	  

•hr-‐1	  

32,73,74	  

	   Medetomidine	   5-‐7	  μg/kg	  IM/IV	  every	  2-‐4	  hrs	  

Bolus2	  of	  3-‐7	  μg/kg	  IV	  followed	  by	  CRI	  at	  1.5-‐3.6	  µg•kg-‐1	  

•hr-‐1	  	  

32,73,74	  

	   Dexmedetomidine	   Bolus2	  of	  1.5-‐3.0	  μg/kg	  IV	  followed	  by	  CRI	  at	  0.75-‐1.8	  µg•kg-‐

1•hr-‐1	  	  

	  

Routes	   and	   intervals	   of	   drug	   administration:	   IV,	   intravenous;	   IM,	   intramuscular;	   SC,	   subcutaneously;	   SID,	  

once	  daily;	  BID,	  twice	  daily;	  TID,	  three	  times	  daily;	  CRI,	  constant	  rate	  infusion.	  1Significant	  central	  excitatory	  



responses	  to	  be	  expected	  from	  doses	  of	  >	  0.05	  mg/kg	  onwards.	  2A	  bolus	  administration	  is	  optional	  but	  not	  

always	  necessary,	   dependent	  on	  opioid	  dose	   and	   route	  of	   administration.	   	   3Acepromazine	  has	   also	  been	  

employed	   to	   improve	   perfusion	   of	   the	   hoof,41,46,483	   even	   though	   recent	   studies	   have	   questioned	   the	  

magnitude	  of	  such	  an	  effect.152	  	  



	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Figure	   1:	   Multimodal	   approach	   to	   pain	   management	   in	   the	   horse	   with	   chronic	  

laminitis	  (see	  text	  for	  more	  detail).	  	  
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