A New Effective Synthesis of Arene Mono and Disulfonyl Chlorides

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/77877 since

Published version:
DOI:10.1055/s-0030-1258104

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:
Questa è la versione dell’autore dell’opera:

The definitive version is available at:
La versione definitiva è disponibile alla URL:
[https://www.thieme-connect.com/ejournals/toc/synlett]
A New Effective Synthesis of Arene Mono and Disulfonyl Chlorides

Margherita Barbero,* Stefano Bazzi, Silvano Cadamuro, Stefano Dughera, Claudio Magistris, Paolo Venturello

Dipartimento di Chimica Generale e Chimica Organica dell’Università, Università di Torino, Via P. Giuria 7, I 10125 Torino, Italy.

Fax: +39 011 6707642
E-mail: margherita.barbero@unito.it.

Abstract: Arene mono and disulfonyl chlorides have been easily synthesized starting from the corresponding anilines via aqueous oxidative chlorination of S-aryl O-ethyl dithiocarbonates intermediates, or aryl methyl sulfides, or from arenethiols.

Key words: arenesulfonyl chlorides, disulfonyl chlorides, oxidative chlorination, arenediazonium salts, aryl dithiocarbonates

Recently, we have reported the use of o-benzenedisulfonimide (1, Figure 1) as a new organocatalyst in some Brønsted acid-catalyzed organic reactions. The key intermediate for the synthesis of 1 is o-benzenedisulfonyl chloride (5f), which has been prepared from o-benzenedisulfonic acid dipotassium salt, o-aminobenzenesulfonic acid, anthranilic acid, and o-bis(methylthio)benzene. Nowadays, both disulfonyl chloride 5f and imide 1 are commercially available, although quite expensive.

Figure 1

Despite the number of synthetic procedures in the literature, the interest in alternative and more convenient procedures for the synthesis of 1 is high. This is due to the usefulness and versatility of 1 and its interesting chiral analogues as safe, nonvolatile, non corrosive, recoverable and recyclable organocatalyst. In this paper, we wish to report preliminary results concerning a new advantageous synthesis of 5f, along with a general procedure for a laboratory scale synthesis of arene mono and disulfonyl chlorides.

Retrosynthetic analysis of compound 5f always requires the presence of two ortho sulfur functionalities on the aromatic ring. These have to be converted into the sulfonyl chloride group independently of the sulfur atom oxidation state. Sulfonyl chlorides are useful intermediates for the synthesis of a wide range of organic derivatives. They are usually prepared through the oxidative chlorination of various sulfur compounds (such as thiols, sulfides, disulfides, but also thioacetates and thiocarbamates), by treatment with chlorine in H$_2$O or in organic solvents (mainly halogenated). Other less hazardous chlorinating agents have been also proposed.

In the past, we patented two procedures to prepare alkyl and arylalkyl sulfonyl chlorides by the aqueous oxidative chlorination of S,S-dialkyl and S,S-diarylalkyl dithiocarbonates, and mono-
and di-alkyl and arylalkyl sulfonyl chlorides from dialkyl or diarylalkyl trithiocarbonates. With this in mind, we recognized the potential of the O,S-diester of dithiocarbonic acid (xanthogenate), as a promising sulfurated functional group. This was more frequently used in the past, but has also occasionally been used in organic synthesis more recently. Xanthogenates have never hitherto been used for oxidative chlorination. In fact, O-ethyl S-aryl dithiocarbonates were intermediates in the earlier syntheses of o-benzenedisulfonyl chloride, in which they were oxidized to the corresponding sulfonic acid by KMnO₄ or HNO₃, and converted into the final derivative by treatment with PCl₅.

From a theoretical point of view, a very straightforward synthesis of o-benzenedisulfonyl chloride could start from o-phenylenediamine via its intermediate dithiocarbonic acid S,S-diester. However, as is well-known in the literature, only 1H-benzotriazole has been produced in trial reactions by diazotization of the diamine. Therefore, we decided to explore the feasibility of the proposed synthetic procedure by testing anilines 2a-e first. Arenediazonium tetrafluoroborates 3 were isolated in satisfactory yield and purity by diazotization of the corresponding aromatic amines and then directly reacted. O-Ethyl S-aryl dithiocarbonates 4 were prepared via the Leuckart reaction by careful addition of salts 3 to a solution of the commercially available potassium O-ethyl dithiocarbonate (Scheme 1).

![Scheme 1](image)

Scheme 1. Conversion of anilines 2a-f into sulfonyl chlorides 5a-f

GC-MS analyses and ¹H NMR spectra of crude reaction mixtures revealed that the expected O,S-diesters 4 were present as the major species. There were also traces of S-ethyl S-aryl dithiocarbonates (isomerization products), and other sulfur derivatives (i.e. disulfides, sulfides, diaryl trithiocarbonates ...). In trial reactions, crude mixtures were reacted under different conditions: chlorinating agent (Cl₂ or NCS), solvent (H₂O / halogenated solvent or H₂O alone), and arenediazonium counter anion (tetrafluoroborate, 3f or o-benzenedisulfonimide, 3g) (Table 1, entries 1–4). The optimized conditions were then successfully applied to some representative aromatic amines, and the corresponding arenesulfonyl chlorides 5a-e were isolated in good overall yields, ranging from 84 to 90% in each step (Table 1, entries 5–8).

<table>
<thead>
<tr>
<th>Entry</th>
<th>2 Y in 2 and 5</th>
<th>Oxidative chlorination conditions</th>
<th>5 Overall yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a 4-Cl</td>
<td>NCS² / 2 N HCl / MeCN</td>
<td>5a 53</td>
</tr>
</tbody>
</table>
Then 2-methylsulfanylaniline (2f) was tested. In the literature few procedures have been proposed in order to convert an alkyl aryl sulfide into arenesulfonyl chloride, and the oxidation of a sulfide to sulfone is an unavoidable side reaction. Chlorinating agents were chlorine or SO2Cl2, in H2O in the presence of organic solvents and/or acids (HCOOH or MeCOOH). A HCOOH / H2O mixture was chosen according to the literature data.10 Salt 3f was converted into 5f (62% overall yield) in the presence of 10 equiv of H2O. Comparable results were obtained starting from the o-benzenedisulfonimide salt 3g (entries 9 and 10).

\[
\text{6} \xrightarrow{i} \text{5f}
\]

\(i\): NCS (8.0 equiv)/ HCl : MeCN, 1 : 5 / 0–10 °C

Scheme 2. Oxidative chlorination of benzene-1,2-dithiol (6) with NCS

Another route to 5f was attempted with the treatment of benzene-1,2-dithiol 6 with N-chlorosuccinimide (NCS, 8.0 equiv) in 2 N HCl / MeCN (1 : 5) at 0–10 °C, and 5f was obtained in 80% yield (Scheme 2).

We decided to extend this synthetic strategy to obtain the 2,2'-biphenyl and 2-2'-binaphthyldisulfonyl chlorides 7 and 8, more interesting synthetic goals, since they can afford the corresponding strong acidic cyclic imides 9 and 10, simply by treatment with ammonia (Scheme 3). Biphenyl-2,2'-disulfonyl chloride (7) was prepared in 1891 by Limpricht with a laborious synthesis which started from 3,3'-dinitrobiphenyl-2,2'-disulfonic acid.13 Disulfonyl chlorides 7 and 8 were then prepared by Barber and Smiles in 1928 via the Ullmann reaction, from sodium o-iodobenzenesulfonate or potassium 1-iodobinaphthyl-2-sulfonate, and later by Armarego and Turner from phenyl o-iodobenzenesulfonate or 1-iodobinaphthyl-2-sulfonate.15a,b Recently, pure
(R)-83b and a 3,3’-disubstituted derivative3a have been prepared in three and four steps, respectively, from (R)-BINOL (overall yields 24–39% and 46%). Both syntheses involved a Newman-Kwart rearrangement of N,N-dimethylthiocarbamate intermediates, followed by direct oxychlorination with NCS or oxidation to disulfonic acid/chlorination.

![Conversion of disulfonyl chlorides 7 or 8 to the corresponding cyclic imides 9 or 10.](image)

Scheme 3. Conversion of disulfonyl chlorides 7 or 8 to the corresponding cyclic imides 9 or 10.

To synthesize 7, we attempted the dixanthate pathway first.

After successful reduction of 2,2’-dinitrobiphenyl16 and diazotization of the resulting 2,2’-diaminobiphenyl, the Leuckart reaction of the corresponding tetrafluoroborate unfortunately only afforded tar by-products. It was therefore decided to synthesize a biphenyl derivative which bears two sulfur functionalities in 2 and 2’ positions, using the Suzuki coupling reaction. Initially, the palladium-catalyzed homocoupling of arenediazonium salt 3f was tested,17 but unfortunately only traces of product were detected by GC-MS analyses. Next, Suzuki coupling conditions18 were applied to 2-methyl-sulfanylbenzenediazonium salt (tetrafluoroborate, 3f or o-benzenedisulfonimide, 3g) and 2-methylsulfanyl-phenylboronic acid, in anhydrous dioxane at 60 °C, in the presence of Pd(OAc)\textsubscript{2} 5–10 mol%: the expected 2,2’-bis(methylsulfanyl)biphenyl (12) was isolated in poor yields (10–12 %).

Finally, according to a previously optimized procedure,19 2-methylsulfanyl o-benzenedisulfonimide (3g) was converted into 2-iodophenyl methyl sulfide (11, 82% yield). Sulfide 11 was then reacted with 2-methylsulfanyl-phenylboronic acid, in toluene at 60 °C, in the presence of Pd\textsubscript{2}(dba)\textsubscript{3} 5 mol% to yield 2,2’-bis(methylsulfanyl)biphenyl (12) in 88% yield. Then, the biphenyl derivative 12 was tested for oxidative chlorination under different conditions. Chlorination with an excess of gaseous Cl\textsubscript{2} in CH\textsubscript{2}Cl\textsubscript{2} / HCOOH / H\textsubscript{2}O, afforded disulfonic chloride 7 in 60% yield (racemic mixture; Scheme 4), along with 2’-methylsulfonylbiphenyl-2-sulfonyl chloride 13 (isolated in 40% yield).
Scheme 4. Conversion of aniline 2f into biphenyl-2,2’-disulfonyl chloride (7)

As regards to 8, an initial synthetic strategy was suggested by the literature. It was reported that 2,2’-binaphthylthiol21 was isolated in 61% yield by the reaction of 2,2’-binaphthyl-diazonium tetrafluoroborate with tetrathiomolibdate.20 The diazotization, as above, of (R)(+)-2,2’-binaphthyl-diamine (14), the subsequent reaction with ammonium tetrathiomolibdate, and the final aqueous oxidative chlorination as in Scheme 2, were expected to give (R)-8 (Scheme 5).

Unfortunately, we were not able to obtain dithiol 16, and therefore this reaction pathway was abandoned.

Scheme 5 Conversion of aniline 14 into binaphthyl-2,2’-disulfonyl chloride (8)

Finally, the xanthate path as attempted (Scheme 5). This approach began with tetrafluoroborate salt 15, which was reacted with KSCSOEt in MeCN. Crude xanthate 17 was treated with an excess of gaseous chlorine in H2O / CH2Cl2. Enantiomeric pure (R)-2,2’-binaphthyl-disulfonyl chloride ((R)-8) was isolated in 27% overall yield. Further optimization is currently under study.

According to a previously optimized procedure,9b pure (R)-(8) was converted into enantiomeric pure (R)-2,2’-binaphthyl-disulfonylimide ((R)-10) in 90% yield.3b

In summary, we have developed a new synthesis of arene mono and disulfonyl chlorides which are key intermediates for the synthesis of strong Brönsted acids, which have recently been reported as promising organocatalysts.

Supporting Information for this article, including new or relevant physical and spectral data for given products, is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Acknowledgment

This work was supported by Italian MIUR and by Università degli Studi di Torino.

References

and oxidative chlorination of crudes 4 to arenesulfonyl chlorides 5: General Procedures

Washed several times with Et2O. After drying under vacuum, pure salts 144 °C. (CHCl3–PE; lit. 23 144–145 °C). 1H NMR (200 MHz, CDCl3)

Finally, after cooling at 0–5 °C, anhyd Et2O was added to precipitate salts 1.60 g) and Na2CO3 (1.0 mmol; 1.06 g) in H2O (40 mL), heated to 35–40 °C. Then the reaction mixture was stirred at 60 °C for 20 min. After cooling at rt, the resultant mixture was poured into Et2O–H2O (40 mL; 2:1). The aqueous layer was separated and extracted with Et2O (2 x 20 mL). The combined organic extracts were washed with H2O (20 mL), dried over Na2SO4, and evaporated. The crude residues were directly reacted to give arenesulfonyl chlorides 5.

Benzene-1,2-disulfonyl chloride (7)

8.45–8.53 (m, 2 H). 13C NMR (50 MHz, CDCl3):

Crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Diazoation of Amines 2: General procedure

To a stirred solution of amines 2 (1.0 mmol) and HBF4 (54% in Et2O; 1.2 mmol; 1.90 g) in HCOOH (15 mL), at 5–10 °C, 3-methylbutyl nitrite (1.29 g; 1.1 mmol) was slowly added at such a rate that the temperature did not rise to 10 °C. The reaction was stopped when Cl2 was no longer absorbed and TLC analysis and appearance of a fine precipitate were used. The reaction mixture was poured into Et2O–H2O (40 mL; 2:1). The aqueous layer was separated and washed several times with Et2O. After drying under vacuum, pure salts 3 were obtained and immediately reacted (physical and 1H and 13C NMR spectral data identical to literature).

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Diazoation of Amines 2: General procedure

To a stirred solution of amines 2 (1.0 mmol) and HBF4 (54% in Et2O; 1.2 mmol; 1.90 g) in HCOOH (15 mL), at 5–10 °C, 3-methylbutyl nitrite (1.29 g; 1.1 mmol) was slowly added at such a rate that the temperature did not exceed 10 °C. Then the reaction mixture was stirred for 10 min in an ice bath, and at rt for 5 min. Finally, after cooling at 0–5 °C, anhyd Et2O was added to precipitate salts 3, gathered by filtration on a Büchner funnel and washed several times with Et2O. After drying under vacuum, pure salts 3 were obtained and immediately reacted (physical and 1H and 13C NMR spectral data identical to literature).

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures

Conversion of crude salts 3 to O-ethyl S-aryl dithio-carbonates 4 and oxidative chlorination of crudes 4 to arenensulfonyl chlorides 5: General Procedures