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Superscaling predictions for NC and CC quasi-elastic neutrino-nucleus scattering
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cDepartamento de F́ısica Atómica, Molecular y Nuclear,

Universidad de Sevilla, Apdo.1065, 41080 Sevilla, Spain and
dCenter for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Quasielastic double differential neutrino cross sections can be obtained in a phenomenological
model based on the superscaling behavior of electron scattering data. In this talk the superscaling
approach (SuSA) is reviewed and its validity is tested in a relativistic shell model. Results including
meson exchange currents for the kinematics of the MiniBoone experiment are presented.

PACS numbers: 25.30.Pt,24.10.-i,25.30.Fj

Analysis of inclusive (e, e′) data have demonstrated
that at energy transfers below the quasielastic (QE) peak
superscaling is fulfilled rather well [1]—[3]. The gen-
eral procedure consist on dividing the experimental (e, e′)
cross section by an appropriate single-nucleon cross sec-
tion to obtain the experimental scaling function f(ψ),
which is then plotted as a function of the scaling vari-
able ψ for several kinematics and for several nuclei. If
the results do not depend on the momentum transfer q,
we say that scaling of the first kind occurs. If there is
not dependence on the nuclear species, one has scaling of
the second kind. The simultaneous occurrence of scaling
of both kinds is called superscaling. The Super-Scaling
approach (SuSA) is based on the assumed universality of
the scaling function for electromagnetic and weak inter-
actions [4].

The superscaling property is exact in the relativistic
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FIG. 1: Scaling properties of the SR shell model. Left: scal-
ing of the first kind. Curves for q = 0.5, 0.7, 1, 1.3, 1.5 GeV
collapse into one. Right: scaling of the second kind. Curves
for 12C, 16O and 40Ca collapse into one.

Fermi gas model (RFG) by construction, and it has been
tested in more realistic models of the (e, e′) reaction [5]–
[7]. A study of superscaling in the semirelativistic (SR)
continuum shell model with Woods-Saxon (WS) mean
potential is summarized in Fig. 1. There we show the
longitudinal scaling function defined as fL = RL/GL,
where RL is the longitudinal response function and GL

is a single-nucleon factor. When fL(ψ) is plotted for
various values of the momentum transfer and for several
closed-shell nuclei, all the curves approximately collapse
into one. Small violations of scaling are seen at low values
of ψ, coming from the low-energy potential resonances for
q = 0.5 GeV/c, which disappear for higher q values.

While the SR shell model superscales, it does not re-
produce the experimental data of the phenomenological
scaling function extracted from the longitudinal QE elec-
tron scattering response. The WS potential used to de-
scribe the final-state interaction (FSI) of the ejected pro-
ton does not incorporate the appropriate reactions mech-
anisms. A further improvement of the FSI consist in us-
ing the Dirac-Equation based potential plus Darwin term
(DEB+D). The DEB potential is obtained from the Dirac
equation for the upper component ψup(r) = K(r, E)φ(r),
where the Darwin term K(r, E) is chosen in such a way
that the function φ(r) satisfies a Schrödinger-like equa-
tion. The electromagnetic L and T scaling functions
within this model are shown in Fig. 2. We use the same
relativistic Hartree potential as in the relativistic mean
field model of [5], and the scaling variable ψ′ includes
a q-dependent energy shift Es(q). Although the scaling
is not perfect, it is remarkable that our results give es-
sentially the same scaling function for a wide range of q
values, reproducing well the phenomenological data.

In Fig. 2 (right) we compare DEB+D and Woods-
Saxon predictions for the 12C(νµ, µ

−) differential QE
cross section for 1 GeV incident neutrinos and for sev-
eral lepton scattering angles. The SuSA reconstructed
cross section is also shown, using the theoretical scaling
function extracted from (e, e′) results with the DEB+D
model (curves in Fig. 2, left). For angles above 15o the
SuSA is applicable and its predictions can be considered

http://arxiv.org/abs/1012.4265v1
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FIG. 2: Left: Scaling of 1st kind with DEB+D potential com-
pared with experimental data. q = 0.5, 0.7 1.0, 1.3 and 1.5
GEV/c. Right: Test of SuSA in the SR shell model for the
12C(νµ, µ

−) reaction with neutrino energy ǫ = 1 GeV. Dotted:
Woods-Saxon potential. Solid: DEB+D potential. Dashed:
SuSA reconstruction from the computed (e, e′) scaling func-
tion.

�; �

N

= 20

0

800700600500400

0.8

0.6

0.4

0.2

0

�; �

N

= 60

0

400350300250200150100500

0.8

0.6

0.4

0.2

0

��; �

N

= 20

0

T

N

[MeV ℄

d

2

�

=

d




=

d

E

N

[

1

0

�

1

5

f

m

2

=

s

r

=

M

e

V

℄

800700600500400

0.08

0.06

0.04

0.02

0

��; �

N

= 60

0

T

N

[MeV ℄

400350300250200150100500

0.4

0.3

0.2

0.1

0

Strange

g

s

A

= �0:2

�

s

= 0:55

No strange

�; �

p

= 20

0

800700600500400

0.8

0.6

0.4

0.2

0

�; �

p

= 60

0

4003002001000

0.8

0.6

0.4

0.2

0

��; �

p

= 20

0

T

p

[MeV ℄

d

2

�

=

d




p

=

d

E

p

[

1

0

�

1

5

f

m

2

=

s

r

=

M

e

V

℄

800700600500400

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

��; �

p

= 60

0

T

p

[MeV ℄

4003002001000

0.5

0.4

0.3

0.2

0.1

0

FIG. 3: Neutral current proton knock-out cross section from
12C. Left: RFG (solid lines), RFG with factorization (dotted
lines), and SuSA (dashed lines). Right: study of nucleon
strangeness effect.
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FIG. 4: Diagrams contributing to the MEC

quite reasonable, with small error.
The superscaling approach has been extended to in-

clusive neutrino scattering via the weak neutral current
[8]. In the (ν,N) reaction a nucleon is detected and the
final neutrino must be integrated. We approximate the
u-channel inclusive scattering cross section

dσ

dΩNdpN
≃ σ(u)

sn F
(u)(ψ(u)). (1)

In Fig. 3 we see that the above factorization is a good



3

0.8 < cos θ < 0.9

Tµ (GeV)

d
2
σ
/d

co
s
θ/
d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

21.510.50

25

20

15

10

5

0

data
SuSA+MEC

0.8 < cos θ < 0.9

Tµ (GeV)

d
2
σ
/d

co
s
θ/
d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

21.510.50

25

20

15

10

5

0

0.7 < cos θ < 0.8

Tµ (GeV)

d
2
σ
/d

co
s
θd
T
µ
(1
0−

3
9
cm

2
/G

eV
)

21.510.50

25

20

15

10

5

0

0.7 < cos θ < 0.8

Tµ (GeV)

d
2
σ
/d

co
s
θd
T
µ
(1
0−

3
9
cm

2
/G

eV
)

21.510.50

25

20

15

10

5

0

0.6 < cos θ < 0.7

Tµ (GeV)

d
2
σ
/d

co
s
θ/
d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

1.61.41.210.80.60.40.20

20

15

10

5

0

0.6 < cos θ < 0.7

Tµ (GeV)

d
2
σ
/d

co
s
θ/
d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

1.61.41.210.80.60.40.20

20

15

10

5

0

0.5 < cos θ < 0.6

Tµ (GeV)

d
2
σ
/d
co
sθ
/d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

1.210.80.60.40.20

18

16

14

12

10

8

6

4

2

0

0.5 < cos θ < 0.6

Tµ (GeV)

d
2
σ
/d
co
sθ
/d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

1.210.80.60.40.20

18

16

14

12

10

8

6

4

2

0

0.4 < cos θ < 0.5

Tµ (GeV)

d
2
σ
/d

co
s
θ/
d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

10.80.60.40.20

18

16

14

12

10

8

6

4

2

0

0.4 < cos θ < 0.5

Tµ (GeV)

d
2
σ
/d

co
s
θ/
d
T
µ
(1
0−

3
9
cm

2
/G

eV
)

10.80.60.40.20

18

16

14

12

10

8

6

4

2

0

0.3 < cos θ < 0.4

Tµ (GeV)

d
2
σ
/d

co
s
θd
T
µ
(1
0−

3
9
cm

2
/G

eV
)

10.80.60.40.20

14

12

10

8

6

4

2

0

0.3 < cos θ < 0.4

Tµ (GeV)

d
2
σ
/d

co
s
θd
T
µ
(1
0−

3
9
cm

2
/G

eV
)

10.80.60.40.20

14

12

10

8

6

4

2

0

FIG. 5: Computed QE (νµ, µ
−) cross section compared to

Miniboone data. Left: SuSA. Right: SuSA + MEC

approximation in the RFG, and therefore one could ex-
tend the scaling analysis used for CC reactions to NC
scattering. In Fig. 3 we show examples of SuSA pre-
dictions of NC cross sections using the phenomenological
(e, e′) scaling function.

Recently the effect of meson exchange currents (MEC)
in (e, e′) for high momentum transfer has been investi-
gated [9, 10], and the two-particle emission (2p-2h) di-
agrams of Fig. 4 have been extended to the CC weak
interaction sector [11], in order to explore the role of
MEC in neutrino reactions. In Fig. 5 we show that
inclusion of 2p-2h contributions yields results for the QE
(νµ, µ

−) cross section that are comparable with the re-
cent MiniBooNE collaboration data [12] for θ ≤ 50o, but
lie below the data at larger angles where the predicted
cross sections are smaller. The inclusion of the correla-
tion diagrams which are required by gauge invariance [10]
plus other relativistic effects might improve the agree-
ment with the data.
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