
26 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Delta-Oriented Programming of Software Product Lines

Publisher:

Published version:

DOI:10.1007/978-3-642-15579-6_6

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/79356 since

Delta-oriented Programming of Software Product
Lines?

Ina Schaefer1??, Lorenzo Bettini2, Viviana Bono2, Ferruccio Damiani2, and Nico
Tanzarella2

1 Chalmers University of Technology, 421 96 Gothenburg, Sweden
schaefer@chalmers.se

2 Dipartimento di Informatica, Università di Torino, C.so Svizzera, 185 - 10149 Torino, Italy
{bettini,bono,damiani}@di.unito.it nicotanz@libero.it

Abstract. Feature-oriented programming (FOP) implements software product
lines by composition of feature modules. It relies on the principles of stepwise
development. Feature modules are intended to refer to exactly one product fea-
ture and can only extend existing implementations. To provide more flexibility
for implementing software product lines, we propose delta-oriented programming
(DOP) as a novel programming language approach. A product line is represented
by a core module and a set of delta modules. The core module provides an imple-
mentation of a valid product that can be developed with well-established single
application engineering techniques. Delta modules specify changes to be applied
to the core module to implement further products by adding, modifying and re-
moving code. Application conditions attached to delta modules allow handling
combinations of features explicitly. A product implementation for a particular
feature configuration is generated by applying incrementally all delta modules
with valid application condition to the core module. In order to evaluate the po-
tential of DOP, we compare it to FOP, both conceptually and empirically.

1 Introduction

A software product line (SPL) is a set of software systems with well-defined common-
alities and variabilities [13, 29]. The variabilities of the products can be defined in terms
of product features [16], which can be seen as increments of product functionality [6].
Feature-oriented programming (FOP) [10] is a software engineering approach relying
on the principles of stepwise development [9]. It has been used to implement SPLs by
composition of feature modules. In order to obtain a product for a feature configuration,
feature modules are composed incrementally. In the context of object-oriented program-
ming, feature modules can introduce new classes or refine existing ones by adding fields
and methods or by overriding existing methods. Feature modules cannot remove code
from an implementation. Thus, the design of a SPL always starts from a base feature
module which contains common parts of all products. Furthermore, a feature module

? This work has been partially supported by MIUR (PRIN 2009 DISCO) and by the German-
Italian University Centre (Vigoni program 2008-2009).

?? This author has been partially supported by the Deutsche Forschungsgemeinschaft (DFG) and
by the EU project FP7-ICT-2007-3 HATS.

is intended to represent exactly one product feature. If the selection of two optional
features requires additional code for their interaction, this cannot be directly handled
leading to the optional feature problem for SPLs [20].

In this paper, we propose delta-oriented programming (DOP) as a novel program-
ming language approach particularly designed for implementing SPLs, based on the
concept of program deltas [32, 31]. The goal of DOP is to relax the restrictions of FOP
and to provide an expressive and flexible programming language for SPL. In DOP, the
implementation of a SPL is divided into a core module and a set of delta modules. The
core module comprises a set of classes that implement a complete product for a valid
feature configuration. This allows developing the core module with well-established
single application engineering techniques to ensure its quality. Delta modules specify
changes to be applied to the core module in order to implement other products. A delta
module can add classes to a product implementation or remove classes from a product
implementation. Furthermore, existing classes can be modified by changing the super
class, the constructor, and by additions, removals and renamings of fields and methods.
A delta module contains an application condition determining for which feature con-
figuration the specified modifications are to be carried out. In order to generate a prod-
uct implementation for a particular feature configuration, the modifications of all delta
modules with valid application condition are incrementally applied to the core module.
The general idea of DOP is not restricted to a particular programming language. In or-
der to show the feasibility of the approach, we instantiate it for JAVA, introducing the
programming language DELTAJAVA.

DOP is a programming language approach especially targeted at implementing
SPLs. The delta module language includes modification operations capable to remove
code such that a flexible product line design and modular product line evolution is sup-
ported. The application conditions attached to delta modules can be complex constraints
over the product features such that combinations of features can be handled explicitly
avoiding code duplication and countering the optional feature problem [20]. The order-
ing of delta module application can be explicitly defined in order to avoid conflicting
modifications and ambiguities during product generation. Using a constraint-based type
system, it can be ensured that the SPL implementation is well formed. This yields that
product generation is safe, which means that all resulting products are type correct. In
order to evaluate the potential of DOP, we compare it with FOP, both on a conceptual
and on an empirical level using case examples studied for FOP.

2 Delta-oriented Programming

In order to illustrate delta-oriented programming in DELTAJAVA, we use the expression
product line (EPL) as described in [25] as running example. We consider the following
grammar for expressions:
Exp ::= Lit | Add | Neg Lit ::= <non−negative integers> Add ::= Exp ”+” Exp Neg ::= ”−” Exp

Two different operations can be performed on the expressions described by this gram-
mar: first, printing, which returns the expression as a string, and second, evaluation,
which computes the value of the expression. The set of products in the EPL can be

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Fig. 1: Feature Model for Expression Problem Product Line

core Print, Lit {
interface Exp { void print(); }

class Lit implements Exp {
int value;
Lit(int n) { value=n; }
void print() { System.out.print(value); }

}
}

Listing 1: Core module implementing Lit and Print features

described with a feature model [16], see Figure 1. It has two feature sets, the ones con-
cerned with data Lit, Add, Neg and the ones concerned with operations Print and Eval.
Lit and Print are mandatory features. The features Add, Neg and Eval are optional.

Core Module In DELTAJAVA, a software product line is implemented by a core module
and a set of delta modules. A core module corresponds to the implementation of a
product for a valid feature configuration. It defines the starting point for generating all
other products by delta module application. The core module depends on the underlying
programming language used to implement the products. In the context of this work, the
core module contains a set of JAVA classes and interfaces. These are enclosed in a core
block additionally specifying the implemented features by listing their names:
core <Feature names> { <Java classes and interfaces> }

The product represented by the core module can be any valid product. Thus, it has to
implement at least the mandatory features and a minimal set of required alternative fea-
tures, if applicable. Note that the core module is not uniquely determined, as illustrated
in Section 3. Choosing the core module to be a valid product allows to develop it with
standard single application engineering techniques to ensure its quality and to validate
and verify it thoroughly with existing techniques. Listing 1 contains a core module for
the EPL. It implements the features Lit and Print.

Delta Modules Delta modules specify changes to the core module in order to imple-
ment other products. The alterations inside a delta module act on the class level (by
adding, removing and modifying classes) and on the class structure level (by modifying
the internal structure of a class by changing the super class or the constructor, or by

delta DEval when Eval {
modifies interface Exp { adds int eval(); }
modifies class Lit {

adds int eval() { return value; }
}

}

delta DAdd when Add {
adds class Add implements Exp {

Exp expr1; Exp expr2;
Add(Exp a, Exp b) { expr1=a; expr2=b; }

}
}

Listing 2: Delta modules for Eval and Add features

adding, removing and renaming fields and methods).3 Furthermore, a delta module can
add, remove or modify interfaces by adding, removing or renaming method signatures.
An application condition is attached to every delta module in its when clause deter-
mining for which feature configurations the specified alterations are to be carried out.
Application conditions are propositional constraints over features. This allows specify-
ing delta modules for combinations of features or to explicitly handle the absence of
features. The number of delta modules required to implement all products of a product
line depends on the granularity of the application conditions. In general, a delta module
has the following shape:
delta <name> [after <delta names>] when <application condition> {

removes <class or interface name>
adds class <name> <standard Java class>
adds interface <name> <standard Java interface>
modifies interface <name> { <remove, add, rename method header clauses> }
modifies class <name> { <remove, add, rename field clauses> <remove, add, rename method clauses> }

}

The left of Listing 2 shows the delta module corresponding to the Eval feature of
the EPL. It modifies the interface Exp by adding the method signature for the eval
method. Furthermore, it modifies the class Lit by adding the method eval. The when
clause denotes that this delta module is applied for every feature configuration in which
the Eval feature is present. The right of Listing 2 shows the delta module required for
the Add feature adding the class Add. The when clause specifies that the delta module
is applied if the features Add is present.

Product Generation In order to obtain a product for a particular feature configuration,
the alterations specified by delta modules with valid application conditions are applied
incrementally to the core module. The changes specified in the same delta module are
applied simultaneously. In order to ensure, for instance, that a class to be modified exists
or that a modification of the same method by different delta modules does not cause a
conflict, an ordering on the application of delta modules can be defined by means of
the after clause. This ordering implies that a delta module is only applied to the core
module after all delta modules with a valid application condition mentioned in the after
clause have been applied. The partial ordering on the set of delta modules defined by
the after clauses captures the necessary dependencies between the delta modules, which
are usually semantic requires relations. As an example, consider the left of Listing 3
which depicts the delta module introducing the evaluation functionality for the addition
expression. Its when clause specifies that it is applied, if both the Add and the Eval

3 Renaming a method does not change calls to this method. The same holds for field renaming.

delta DAddEval after DAdd when Add && Eval {
modifies class Add {

adds int eval()
{ return expr1.eval() + expr2.eval(); }

}
}

delta DAddPrint after DAdd when Add && Print {
modifies class Add {

adds void print()
{ expr1.print();

System.out.print(” + ”); expr2.print(); }
}

}

Listing 3: Delta modules for Add and Eval and for Add and Print features

interface Exp { void print(); int eval(); }

class Lit implements Exp {
int value;

Lit(int n) { value=n; }
void print()

{ System.out.print(value); }
int eval()

{ return value; }
}

class Add implements Exp {
Exp expr1; Exp expr2;
Add(Exp a, Exp b) { expr1=a; expr2=b;}
void print()

{ expr1.print();
System.out.print(” + ”); expr2.print(); }

int eval()
{ return expr1.eval() + expr2.eval();}

}

Listing 4: Generated implementation for Lit, Add, Print, Eval features

features are present. In the after clause, it is specified that this delta module has to be
applied after the delta module DAdd because the existence of the class Add is assumed.
The implementation of the delta module DAddPrint is similar. Note that specifying that
a delta module A has to be applied after the delta module B does not mean that A
requires B: it only denotes that if a feature configuration satisfies the when clause of
both A and B, then B must be applied before A.

The generation of a product for a given feature configuration consists of the fol-
lowing steps, performed automatically by the system: (i) Find all delta modules with a
valid application condition according to the feature configuration (specified in the when
clause); and (ii) Apply the selected delta modules to the core module in any linear or-
dering respecting the partial order induced by the after clauses.

As an example of a product implementation generated by delta application, consider
Listing 4 which shows the implementation of the Lit, Add, Print, Eval features of the
EPL. It is an ordinary JAVA program containing the interface Exp and the classes Lit
and Add. The implementation is obtained by applying the delta modules depicted in
Listings 2 and 3 to the core module (cf. Listing 1) in any order in which DAddEval and
DAddPrint are applied after DAdd.

Safe Program Generation The automatic generation of products by delta application
is only performed if the DELTAJAVA product line implementation is well-formed. Well-
formedness of a product line means that all delta modules associated to a valid feature
configuration are well-formed themselves and applicable to the core module in any
order compatible with the partial order provided by the after clauses. The partial or-
der ensures that all compatible application orders generate the same product. A delta
module is well-formed, if the added and removed classes are disjoint and if the modi-
fications inside a class target disjoint fields and methods. A delta module is applicable

to a product if all the classes to be removed or modified exist, all methods and fields
to be removed or renamed exist and if classes, methods and fields to be added do not
exist. Furthermore, all delta modules applicable for the same valid feature configuration
that are not comparable with respect to the after partial order must be compatible. This
means that no class is added or removed in more than one delta module, and for every
class modified in more than one delta module the fields or methods added, modified and
renamed are disjoint. This implies that all conflicts between modifications targeting the
same class have to be resolved by the ordering specified with the after clauses.

In order to ensure well-formedness, DELTAJAVA is accompanied by a constraint-
based type system. For each delta module in isolation, a set of constraints is generated
that refers to the classes, methods or fields required to exist or not to exist for the delta
module to be applicable. Then, for every valid feature configuration, only by checking
the constraints, it can be inferred whether delta module application will lead to a well-
typed JAVA program. The separate constraint generation for each delta module avoids
reinspecting all delta modules if only one delta is changed or added. Furthermore, if an
error occurs, it can easily be traced back to the delta modules causing it.

3 Implementing Software Product Lines

The delta-oriented implementation of a SPL in DELTAJAVA comprises an encoding of
the feature model, the core module and a set of delta modules necessary to implement
all valid products. The feature model is described by its basic features and a proposi-
tional formula describing the valid feature configurations (other representations might
be considered [6]). In this section, we show how SPLs are flexibly implemented in
DELTAJAVA starting from different core products using the EPL as illustration.

Starting from a Simple Core The core module of a DELTAJAVA product line contains
an implementation of a valid product. One possibility is to take only the mandatory
features and a minimal number of required alternative features, if applicable. In our
example, the Lit and Print features are the only mandatory features. Listing 1 shows the
respective core module serving as starting point of a SPL implementation starting from a
simple core. In order to represent all possible products, delta modules have to be defined
that modify the core product accordingly. For the EPL starting from the simple core, this
are the delta modules depicted in Listings 2 and 3 together with three additional delta
modules implementing the Neg feature alone as well as in combination with the Print
feature and the Eval feature. Their implementation is similar to the implementation of
the DAdd, DAddPrint and DAddEval delta modules and, thus, not shown here. Listing 5
shows the complete implementation of the EPL containing the encoding of the feature
model (cf. Figure 1), the core module and the delta modules. For space reasons, the
concrete implementations of the core and delta modules are omitted.

Starting from a Complex Core Alternatively, a SPL implementation in DELTAJAVA
can start from any product for a valid feature configuration containing a larger set of
features. The advantage of the more complex core product is that all included func-
tionality can be developed, validated and verified with standard single application tech-
niques. In order to illustrate this idea, we choose the product with the Lit, Add, Print

features Lit, Add, Neg, Print, Eval
configurations Lit && Print && (Add | Neg | Eval)
core Lit, Print { [...] }
delta DEval when Eval { [...] }
delta DAdd when Add { [...] }
delta DAddPrint after DAdd when Add && Print { [...] }
delta DAddEval after DAdd when Add && Eval { [...] }
delta DNeg when Neg { [...] }
delta DNegPrint after DNeg when Neg && Print { [...] }
delta DNegEval after DNeg when Neg && Eval { [...] }

Listing 5: Product Line Implementation in DELTAJAVA starting from Simple Core

delta DRemEval when !Eval && Add {
modifies interface Exp { removes eval;}
modifies class Lit { removes eval;}
modifies class Add { removes eval;}

}

Listing 6: Removing Eval from Complex Core

and Eval features as core product whose implementation is contained in Listing 4. In
order to provide product implementations containing less features, functionality has to
be removed from the core. Listing 6 shows a delta module that removes the evaluation
functionality from the complex core. It is applied to the core module if the Eval feature
is not included in a feature configuration, but the Add feature is selected. This means
that only the eval method from the Add class is removed, but not the Add class itself.

Listing 7 shows the implementation of the EPL starting from the complex core
module depicted in Listing 4. In addition to the delta module DRemEval, a delta module
DRemAdd (not shown here) is required to remove the Add class if the Add feature is
not selected, and a third delta module DRemAddEval (not shown here) is required to
remove the eval method from the Lit class and the Exp interface, in case both the Eval
and the Add features are not selected. Further, the delta modules DNeg, DNegPrint and
DNegEval as in the previous implementation are required.

features Lit, Add, Neg, Print, Eval
configurations Lit && Print && (Add | Neg | Eval)
core Lit, Print, Add, Eval { [...] }
delta DRemEval when !Eval && Add { [...] }
delta DRemAdd when !Add { [...] }
delta DRemAddEval when !Add && !Eval { [...] }
delta DNeg when Neg { [...] }
delta DNegPrint after DNeg when Neg && Print { [...] }
delta DNegEval after DNeg when Neg && Eval { [...] }

Listing 7: Product Line Implementation in DELTAJAVA starting from Complex Core

interface Exp { String print(); }

class Lit implements Exp {
int value;
Lit(int n) { value=n; }
void print() { System.out.print(value); }

}

(a) LitPrint feature module

class Add implements Exp {
Exp x;
Exp y;
Add(Exp x, Exp y) { this.x = x; this.y = y; }
public String print() { return x + ”+” + y; }

}

(b) AddPrint feature module

refines interface Exp { int eval(); }

refines class Lit {
public int eval() { return value; }

}

(c) LitEval feature module

refines class Add {
public int eval()

{ return x.eval() + y.eval(); }
}

(d) AddEval feature module

Listing 8: Feature Modules for EPL in JAK

4 Comparing Delta-oriented and Feature-oriented Programming

In order to evaluate DOP of SPLs, we compare it with FOP [10]. Before the comparison,
we briefly recall the main concepts of FOP.

4.1 Feature-oriented Programming

In FOP [10], a program is incrementally composed from feature modules following the
principles of stepwise development. A feature module can introduce new classes and re-
fine existing ones. The concept of stepwise development is introduced in GenVoca [9]
and extended in AHEAD [10] for different kinds of design artifacts. For our compari-
son, we restrict our attention to the programming language level of AHEAD, i.e., the
JAK language, a superset of JAVA containing constructs for feature module refinement.

In order to illustrate FOP in JAK, we recall the implementation of the EPL pre-
sented in [25]. The five domain features, shown in the feature model in Figure 1, are
transformed into six feature modules. The difference between the number of domain
features and the number of feature modules is due to the fact that combinations of do-
main features cannot be dealt with explicitly in JAK. Therefore, a suitable encoding of
the domain features has to be chosen. This results in the feature modules for the feature
combinations LitPrint, AddPrint and NegPrint combining every data feature with the
Print feature. Furthermore, for each data feature, there is a feature module adding the
evaluation operation, i.e., LitEval, AddEval and NegEval. The JAK code implementing
the feature modules LitPrint, AddPrint, LitEval, and AddEval is shown in Listing 8.
The generation of a product starts from the base feature module LitPrint. A program
containing the Lit, Add, Print, and Eval features can be obtained by composing the
feature modules as follows: LitPrint • AddPrint • LitEval • AddEval. The code of the
resulting program is as shown in Listing 4.

4.2 Comparison

Both delta modules and features modules support the modular implementation of SPLs.
However, they differ in their expressiveness, the treatment of domain features, solutions
for the optional features problem, guarantees for safe composition and support for evo-
lution. Both techniques scale to a general development approach [10, 31].

Expressiveness Feature modules can introduce new classes or refine existing ones fol-
lowing the principles of stepwise development [10]. The design of a SPL always starts
from the base feature module containing common parts of all products. In contrast, delta
modules support additions, modifications and removals of classes, methods and fields.
This allows choosing any valid feature configuration to be implemented in the core
module and facilitates a flexible product line design starting from different core prod-
ucts, as shown in Section 3. The core module contains an implementation of a complete
product. This allows developing and validating it with well-established techniques from
single application engineering, or to reengineer it before starting the delta module pro-
gramming to ensure its quality. For verification purposes, it might save analysis effort to
start with a complex product, check the contained functionality thoroughly and remove
checked functionality in order to generate other products. In JAK, an original method
implementation before refinement can be accessed with a Super() call. Delta modules
currently do not have an equivalent operation. However, a Super() call in delta modules
could be encoded by renaming the method to be accessed and adding a corresponding
call during program generation.

Domain Features In FOP, domain-level features are intentionally separated from fea-
ture modules in order to increase the reusability of the refinements. The mapping from
domain features to the feature modules is taken care of by external tools. In the AHEAD
Tool Suite [10], the external tool guidsl [6] supports this aspect of product generation.
For a given domain feature configuration, guidsl provides a suitable composition of the
respective feature modules.

In a DELTAJAVA implementation, the features of the feature model and the corre-
sponding constraints are explicitly specified. This allows reasoning about feature con-
figurations within the language. For product generation, it can be established that the
provided feature configuration is valid, such that only valid products are generated.
For each delta module, the application condition ranges over the features in the fea-
ture model such that the connection of the modifications to the domain-level features is
made explicit. This limits the reusability of delta modules for another SPL, but allows
static analysis to validate the design of the very product line that is implemented. It can
be checked whether the application condition of a delta module can actually evaluate
to true for any valid feature configuration. Otherwise, the delta module will never be
applied and can be removed. Furthermore, for a given feature configuration, the set of
applicable delta modules can be determined directly without help of external tools. If,
for instance, a new delta module has to be added, it is easy to learn about the conse-
quences and potential conflicts in the existing implementation.

The Optional Feature Problem The optional feature problem [20] occurs when two
optional domain features require additional code for their interaction. Feature mod-

ules [10] are not intended to refer to combinations of features. Thus, one way to solve
the optional feature problem is to move code belonging to one feature to a feature mod-
ule for another feature, similar to the combination of domain features in the EPL. This
solution violates the separation of concerns principle [20] and leads to a non-intuitive
mapping between domain features and feature modules. In the Graph Product Line [24]
implementation [5] (cf. Section 5), the optional feature problem is solved by multiple
implementations per domain feature which leads to code duplications. Alternatively,
derivative modules [23] can be used. In this case, a feature module is split into a base
module only containing introductions and a set of derivative modules only containing
refinements that are necessary if other features are also selected. However, this may
result in a large number of small modules and might not scale in practice [20].

In contrast, the optional feature problem can be solved in DOP within the language.
A delta module does not correspond to one domain feature, but can refer to any combi-
nation of features. By the application condition of a delta module, the feature configura-
tions the delta module is applied for are made explicit such that code only required for
feature interaction can be clearly marked. In particular, delta modules can implement
derivative modules. The implementation of the EPL in Listing 5 follows the derivative
principle. Moreover, code duplication between two features modules can be avoided by
factoring common code into a separate delta module that is applied if at least one of the
respective features is selected.

Safe Composition Feature composition in FOP is performed in a fixed linear order.
This linear ordering has to be provided before feature module composition to avoid
conflicting modifications. In DOP, the partial order specified in the after clauses of
delta modules captures only essential dependencies and semantic requirements between
different modifications of the same class or method. Instead of specifying a partial order,
conflicting modifications between delta modules could also be prohibited completely at
the price of writing additional delta modules for the respective combinations. Thus, the
partial order is a compromise between modularity and a means to resolve conflicting
modifications without increasing the number of delta modules.

During feature module composition, it is not guaranteed that the resulting program
is correct, e.g., that each referenced field or method exists. Such errors are only raised
during compilation of the generated program. Recently, there have been several ap-
proaches to guarantee safety of feature module composition [2, 3, 14, 35] by means of
external analysis or type systems. DELTAJAVA has an integrated constraint-based type
system guaranteeing that the generated program for every valid feature configuration
is type correct and that all conflicts are resolved by the partial order. Constraints are
generated for each delta module in isolation such that an error can be traced back to the
delta modules where it occurred. Additionally, changed or added delta modules do not
require re-checking the unchanged delta modules.

Product Line Evolution Product lines are long-lived software systems dealing with
changing user requirements. For example, if in the EPL printing should become an
optional feature, the JAK implementation has to be refactored to separate the printing
functionality from the implementation of the data. In the DELTAJAVA implementation,
only one delta module has to be added to remove the printing functionality from the

Feature-oriented Programming Delta-oriented Programming

Expressiveness Design from Base Module Design from Any Product

Domain Features Bijection between Features and
Feature Modules

Delta Modules for Feature
Combinations

Optional Feature
Problem

Rearrange Code, Multiple Impl.,
Derivative Modules

Direct Implementation of
Interaction

Safe Composition External Tools, Type Systems Partial Order for Conflict
Resolution, Type System

Evolution Refactoring Addition of Delta Modules

Table 1: Summary of Comparison

simple as well as from the complex core, while all other delta modules remain un-
changed. To this end, the expressivity of the modification operations in delta modules
supports modular evolution of SPL implementations.

Scaling Delta-oriented Programming The AHEAD methodology [10] for developing
software by stepwise development is not limited to the implementation level and has
been instantiated to other domain-specific languages as well as to XML. Similarly, the
concepts of DOP can be applied to other programming or modeling languages. In [32],
a seamless delta-oriented model-driven development process is proposed. The variabil-
ity structure in terms of core and delta modules has to be determined only once for an
initial delta-oriented product line representation on a high level of abstraction. By step-
wise refinement of the delta-oriented product models without changing the variability
structure, a DELTAJAVA implementation of a SPL can eventually be obtained. In this
way, product variability can be managed in the same manner on all levels during SPL
development.

Summary FOP is a general software engineering approach based on the principles of
stepwise development that has been used to implement SPLs. In contrast, DOP is specif-
ically designed for this task such that it differs from FOP as summarized in Table 1.

5 Evaluation

In order to evaluate DOP in practice, we have implemented a set of case studies in
DELTAJAVA that have also been studied in the context of JAK [10]. These case studies
include two versions of the EPL [1, 25], two smaller case examples [7], and the Graph
Product Line (GraphPL), suggested in [24] as a benchmark to compare SPLs architec-
tures. The first implementation of the EPL in AHEAD [1] follows the derivative module
principle. The second implementation of the EPL is the same as sketched in this paper
and presented in [25]. In the corresponding DELTAJAVA implementations, the design
of the delta modules has been chosen to mimic the AHEAD design. In order to evalu-
ate the flexibility of DOP, we have implemented each example in DELTAJAVA starting

JAK DELTAJAVA DELTAJAVA

Simple Core Complex Core

feature
modules

LOC # delta
modules

LOC # delta
modules

LOC

EPL [1] 12 98 7 123 6 144
EPL [25] 6 98 5 117 5 124
Calculator [7] 10 75 6 76 6 78
List [7] 4 48 3 58 2 59
GraphPL [24] 19 2348 20 1407 19 1373

Table 2: Evaluation Results (LOC is the number of lines of code)

from a simple core product and from a complex core product. For the EPL, we used the
simple and the complex core products presented in Section 3.

The results of our evaluation are summarized in Table 2 containing the number of
feature modules or delta modules and the corresponding lines of code required to imple-
ment the respective examples. The number of feature modules and delta modules does
not differ significantly in the considered examples. For the first version of the EPL [1],
the only reason that 12 features modules are necessary is that also interfaces are im-
plemented by separate modules which is a design decision taken in [1]. In the second
version of the EPL [25], the number of delta modules plus the core module is actu-
ally the same as the number of features modules, since DELTAJAVA encodes the same
modular SPL representation. In the Calculator and List examples, less delta modules
are required because several feature modules could be combined into one delta mod-
ule, whereas in the GraphPL example with the simple core, additional delta modules
are used to factor out common code for combinations of features. In the considered ex-
amples, the differences between the number of delta modules required to implement a
SPL starting from a simple core or starting from a complex core are marginal. A more
conceptual analysis on how the choice of the core product influences the SPL design is
subject to future work.

In the smaller case examples, the lines of code in DELTAJAVA exceed the lines of
code required in JAK, because in DELTAJAVA the feature model encoding and the ap-
plication conditions have to be specified. Furthermore, as DELTAJAVA currently has no
call to the original variants of modified methods, the required renaming has to be done
manually, leading to additional lines of code, in particular for the EPL. This can be
avoided if DELTAJAVA is extended with an operation similar to the JAK Super() call as
pointed out in Section 4. In the larger case example of the GraphPL [24], delta modules
require much less code, because they can represent product functionality more flexibly.
First, common code for two features can be factored out into one delta module, and
second, combinations of features can be treated directly by designated delta modules
instead of duplicating code for feature combinations. This shows that DOP can be ben-
eficial in terms of code size for larger SPLs in which the optional feature problem [20]
arises. However, tool support has to be provided to deal with the complexity that is

introduced by the flexibility of DOP, e.g., for visualizing dependencies between delta
modules applicable for the same feature configuration.

6 Related Work

The approaches to implementing SPLs in the object-oriented paradigm can be clas-
sified into two main directions [19]. First, annotative approaches, such as conditional
compilation, frames [36] or COLORED FEATHERWEIGHT JAVA (CFJ) [17], mark the
source code of the whole SPL with respect to product features on a syntactic level. For
a particular feature configuration, marked code is removed.

Second, compositional approaches, such as DELTAJAVA, associate code fragments
to product features that are assembled to implement a particular feature configuration.
In [25], general program modularization techniques, such as aspects [18], framed as-
pects [26], mixins [33], hyperslices [34] or traits [15, 11], are evaluated with respect
to their ability to implement features. Furthermore, the modularity concepts of recent
languages, such as SCALA [28] or NEWSPEAK [12], can be used to represent prod-
uct features. Although the above approaches are suitable to express feature-based vari-
ability, they do not contain designated linguistic concepts for features. Thus, DOP is
most closely related and compared to FOP which considers features on a linguistic
level. Apart from JAK [10], there are various other languages using the FOP paradigm,
such as FEATUREC++ [4], FEATUREFST [5], or Prehofer’s feature-oriented JAVA ex-
tension [30]. In [27], CAESARJ is proposed as a combination of feature modules and
aspects extending FOP with means to modularize crosscutting concerns.

The notion of program deltas is introduced in [25] to describe the modifications of
object-oriented programs. In [32], DOP is used to develop product line artifacts suitable
for automated product derivation and implemented with frame technology [36]. In [31],
delta-oriented modeling is extended to a seamless model-based development approach
for SPLs where an initial product line representation is stepwise refined until an imple-
mentation, e.g., in DELTAJAVA, can be generated. The ordering of delta modules within
the after clause resembles the precedence order on advice used in aspect-oriented pro-
gramming, e.g., in ASPECTJ [21]. The constraints that are generated for delta modules
in order to ensure safe product generation require the existence and non-existence of
classes, methods or fields which is similar to the constraints used in [22]. Delta mod-
ules are one possibility to implement arrows in the category-theoretical framework for
program generation proposed by Batory in [8].

7 Conclusion and Future Work

We have presented DOP, a novel programming approach particularly designed to imple-
ment SPLs. It allows the flexible modular implementation of product variability start-
ing from different core products. Because core products are complete product imple-
mentations, they can be developed with well-established single application engineering
techniques to ensure their quality. DOP provides a solution to the optional feature prob-
lem [20] by handling combinations of features explicitly.

For future work, we will extend DELTAJAVA with a Super() call as in JAK to di-
rectly express the access to methods that are modified by delta modules applied later
during product generation in order to avoid a combinatorial explosion for combinations
of optional features. Furthermore, we will improve the tool support for DELTAJAVA
with IDE functionalities, e.g., to show the set of applicable delta modules for a given
feature configuration. In order to propose a process for the selection of core products,
we are investigating how to the choice of the core product influences the design of the
delta modules. Finally, we are aiming at efficient verification techniques of SPLs imple-
mented by core and delta modules without generating the products. This work will use
the information available in the delta modules to determine unchanged parts between
different products to reuse verification results.

Acknowledgements We are grateful to Sven Apel, Don Batory and Roberto E. Lopez-
Herrejon for many insightful comments on a preliminary version of this paper. We also
thank the anonymous SPLC referees for detailed suggestions for improving the paper.

References

1. Expression Problem Product Line, Webversion. Available at http://www.cs.utexas.
edu/users/schwartz/ATS/EPL/.

2. S. Apel, C. Kästner, A. Grösslinger, and C. Lengauer. Type safety for feature-oriented prod-
uct lines. Automated Software Engineering An International Journal, 2010.

3. S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java: A Calculus for Feature-
Oriented Programming and Stepwise Refinement. In GPCE, pages 101–112. ACM, 2008.

4. S. Apel, T. Leich, M. Rosenmüller, and G. Saake. Featurec++: On the symbiosis of feature-
oriented and aspect-oriented programming. In GPCE, volume 3676 of LNCS, pages 125–
140. Springer, 2005.

5. S. Apel and C. Lengauer. Superimposition: A language-independent approach to software
composition. In Software Composition, volume 4954 of LNCS, pages 20–35. Springer, 2008.

6. D. Batory. Feature Models, Grammars, and Propositional Formulas. In SPLC, volume 3714
of LNCS, pages 7–20. Springer, 2005.

7. D. Batory. A Tutorial on Feature Oriented Programming and the AHEAD Tool Suite (ATS).
In GTTSE, volume 4143 of LNCS, pages 3–35. Springer, 2006.

8. D. Batory. Using modern mathematics as an FOSD modeling language. In GPCE, pages
35–44. ACM, 2008.

9. D. Batory and S. O’Malley. The design and implementation of hierarchical software systems
with reusable components. ACM Trans. Softw. Eng. Methodol., 1(4):355–398, 1992.

10. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE Trans.
Software Eng., 30(6):355–371, 2004.

11. L. Bettini, F. Damiani, and I. Schaefer. Implementing Software Product Lines using Traits.
In SAC, OOPS Track, pages 2096–2102. ACM, 2010.

12. G. Bracha. Executable Grammars in Newspeak. ENTCS, 193:3–18, 2007.
13. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison

Wesley Longman, 2001.
14. B. Delaware, W. Cook, and D. Batory. A Machine-Checked Model of Safe Composition. In

FOAL, pages 31–35. ACM, 2009.
15. S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A mechanism for

fine-grained reuse. ACM TOPLAS, 28(2):331–388, 2006.

16. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie Mellon Software
Engineering Institute, 1990.

17. C. Kästner and S. Apel. Type-Checking Software Product Lines - A Formal Approach. In
ASE, pages 258–267. IEEE, 2008.

18. C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features Using AspectJ. In
SPLC, pages 223–232. IEEE, 2007.

19. C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines. In ICSE,
pages 311–320. ACM, 2008.

20. C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and G. Saake. On the
Impact of the Optional Feature Problem: Analysis and Case Studies. In SPLC. IEEE, 2009.

21. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview
of AspectJ. In ECOOP, volume 2072 of LNCS, pages 327–353. Springer, 2001.

22. M. Kuhlemann, D. Batory, and C. Kästner. Safe composition of non-monotonic features. In
GPCE, pages 177–186. ACM, 2009.

23. J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of legacy applications. In
ICSE, pages 112–121. ACM, 2006.

24. R. Lopez-Herrejon and D. Batory. A standard problem for evaluating product-line method-
ologies. In GCSE, volume 2186 of LNCS, pages 10–24. Springer, 2001.

25. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in Advanced
Modularization Technologies. In ECOOP, volume 3586 of LNCS, pages 169–194. Springer,
2005.

26. N. Loughran and A. Rashid. Framed aspects: Supporting variability and configurability for
aop. In ICSR, volume 3107 of LNCS, pages 127–140. Springer, 2004.

27. M. Mezini and K. Ostermann. Variability management with feature-oriented programming
and aspects. In SIGSOFT FSE, pages 127–136. ACM, 2004.

28. M. Odersky. The Scala Language Specification, version 2.4. Technical report, Programming
Methods Laboratory, EPFL, 2007.

29. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer, 2005.

30. C. Prehofer. Feature-oriented programming: A fresh look at objects. In ECOOP, volume
1241 of LNCS, pages 419–443. Springer, 1997.

31. I. Schaefer. Variability Modelling for Model-Driven Development of Software Product
Lines. In Intl. Workshop on Variability Modelling of Software-intensive Systems, 2010.

32. I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A Model-Based Framework for Automated
Product Derivation. In Proc. of MAPLE, 2009.

33. Y. Smaragdakis and D. Batory. Mixin layers: an object-oriented implementation tech-
nique for refinements and collaboration-based designs. ACM Trans. Softw. Eng. Methodol.,
11(2):215–255, 2002.

34. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of separation: multi-
dimensional separation of concerns. In ICSE, pages 107–119, 1999.

35. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product Lines. In
GPCE, pages 95–104. ACM, 2007.

36. H. Zhang and S. Jarzabek. An XVCL-based Approach to Software Product Line Develop-
ment. In Software Engineering and Knowledge Engineering, pages 267–275, 2003.

