Determination of As(III) by anodic stripping voltammetry using a lateral gold electrode: Experimental conditions, electron transfer and monitoring of electrode surface

This is the author's manuscript

Original Citation:
Determination of As(III) by anodic stripping voltammetry using a lateral gold electrode: Experimental conditions, electron transfer and monitoring of electrode surface / A. Giacomino; O. Abollino; M. Lazzara; M. Malandrino; E. Mentasti. - In: TALANTA. - ISSN 0039-9140. - 83(2011), pp. 1428-1435.

Availability:
This version is available http://hdl.handle.net/2318/83552 since 2016-01-18T16:08:21Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Determination of As(III) by anodic stripping voltammetry using a lateral gold electrode. Experimental conditions, electron transfer and monitoring of electrode surface
Abstract

The aim of this work is to evaluate the efficiency of the determination of As(III) by anodic stripping voltammetry (ASV) using a lateral gold electrode and to study the modifications of the electrode surface during use. Potential waveforms (differential pulse and square wave), potential scan parameters, deposition time, deposition potential and surface cleaning procedure were examined for they effect on arsenic peak intensity and shape. The best responses were obtained with differential pulse potential wave form and diluted 0.025 M HCl as supporting electrolyte. The repeatability, linearity, accuracy and detection limit of the procedure and the interferences of cations and anions in solution were evaluated. The applicability of the procedure for As(III) determination in drinking waters was tested. Cyclic voltammetry (CV) was used to study the electrochemical behaviour of As(III) and for the daily monitoring of electrode surface. Also scanning electron microscopy (SEM) analysis was used to control the electron surface. Finally we evaluated the possibility to apply the equations valid for flow systems also to a stirred system, in order to calculate the number of electrons transferred per molecule during the stripping step.

Keywords: Arsenic, Anodic stripping voltammetry, Lateral gold electrode, Cyclic voltammetry, Electron transfer
1. Introduction

Arsenic is a naturally occurring element which is widely distributed in the earth’s crust. It is increasingly being found in drinking water in many parts of the world such as Bangladesh, India, Great Britain, and Thailand, and within the U.S. in California, Oregon, Massachusetts, Maine, and New Hampshire [1-5]. Exposure to arsenic can cause a variety of adverse health effects, including dermal damages, respiratory, cardiovascular, gastrointestinal, genotoxic, mutagenic and carcinogenic effects [6]. Arsenic pollution in natural waters and other environmental compartments is hence a worldwide problem, and its determination has become an interesting challenge for the analytical chemists [7].

The predominant arsenic-containing species found in natural waters are inorganic arsenate and arsenite and organic dimethylarsinic and monomethylarsonic acids. The interest in determining the levels of individual compounds of arsenic in environmental samples arises from the recognition that transport, bioavailability, toxicity and possible carcinogenic activity are highly dependent on the chemical form of the element [8]. Inorganic arsenic is more toxic than organic arsenic, and arsenite more toxic than arsenate [9]. However this is a simplification, as the speciation is influenced by ambient conditions and by changes in biologically-mediated redox conditions [10]. Since the concentration of arsenic in unpolluted natural waters is at \(\mu g/l \) or sub-\(\mu g/l \) levels, it is very important from the analytical point of view to develop sensitive and reliable techniques capable to determine nanogram levels of arsenic [11].

The guideline value for arsenic in drinking water indicated both by the US Environmental Protection Agency (EPA) and by the World Health Organization (WHO) is 10 \(\mu g/l \) [7,12].
Many methods to determine such level of arsenic have been proposed: atomic absorption spectrometry (AAS) mainly coupled to hydride generation (HG-AAS), electrothermal AAS with graphite furnace (ET-AAS), atomic fluorescence spectrometry (AFS), atomic emission spectrometry (AES) generally with inductively coupled plasma (ICP-AES), inductively coupled plasma-mass spectrometry (ICP-MS), high-performance liquid chromatography coupled to ICP-MS (HPLC-ICP-MS), X-ray fluorescence (XRF), neutron-activation analysis (NAA) and capillary electrophoresis (CE) [13-20]. Such technologies are laboratory-based and time-intensive and can have large costs for instrument purchase and management. Available literature suggests that an attractive and less expensive solution to these problems is represented by electrochemical techniques. Electrochemical methods for the determination of As(III) involve anodic stripping voltammetry (ASV), cathodic stripping voltammetry (CSV), adsorptive cathodic stripping voltammetry (AdSV) or potentiometric stripping analysis [20-22].

AdSV using a hanging mercury drop electrode (HMDE) is based on a preelectrolysis step in which As(III) forms an intermetallic compound, added in excess, which is accumulated onto the electrode and successively stripped during the cathodic scan [23]. This method is especially suitable for trace analysis due to the enrichment of the analyte at the electrode, resulting in a detection limit usually at the sub-µg l⁻¹ level. HMDE effectively avoids memory problems because a new mercury drop is generated for each determination [8,24-26]. Alternatively, ligands such as pyrrolidine dithiocarbamate (PDC) can be used to form a complex with As: the As-PDC complex is adsorptively deposited onto the HMDE [27].

Recently, the analytical use of mercury is discouraged due to its toxicity. Many kinds of working electrode materials have been reported for the determination of arsenic, including platinum, gold, carbon substrates, and boron-doped diamond [11,12,20,28].
In particular, gold was found to be the superior substrate as a working electrode for arsenic determination [20,29,30], because it provides a more sensitive response toward arsenic oxidation than other electrode materials and has a higher hydrogen overvoltage than platinum [31,32]. Problems occurring with solid electrodes include the dependence of their response on pre-treatment and the formation of oxide films, which limits sensitivity and reproducibility and, as a consequence, their use for routine applications [23,33].

ASV is the voltammetric technique commonly used for the determination of As with solid gold electrodes. This determination is generally specific for As(III), whilst arsenate (As(V) is detected with difficulty. In fact, As(V) has traditionally been regarded as poorly electroactive in alkaline, neutral or acidic media, unless in extreme conditions of acid concentrations [34,35] or at high negative potentials. In practice, As(V) is chemically reduced to As(III), using reductants such as iodide [36], mannitol [37], sulfur dioxide [38], prior to the electrochemical measurement of total arsenic. In some studies, however, this view has been reconsidered, having been demonstrated that it is possible to effectively reduce As(V) under milder conditions [16,37,39].

In the present study, the use of a lateral gold electrode for As(III) determination by ASV was investigated. We choose to work with the lateral gold electrode (for As(III) determination,) with a view to a future application of this procedure to the determination of total As (As(V)+As(III)) and then to speciation studies. In fact the evolution of hydrogen gas (first in form of nascent hydrogen) at the cathode and of chlorine gas at the anode is one of the major problems for the reliable and reproducible quantification of total arsenic [34]. The problem of the evolution of hydrogen gas can be minimised using a mild acid electrolyte or using a lateral gold electrode, instead of a frontal gold electrode, that mechanically removes the hydrogen bubbles just after their formation.
In this work we optimised the conditions for As(III) determination by studying the effects of the parameters that normally can influence the analytical response. The shapes and intensities of the As peak using HCl at different concentrations as supporting electrolyte were compared. The effect of different potential wave forms, namely differential pulse (DP) and square wave (SW), scan parameters (amplitude, frequency, step potential, interval time, modulation time, modulation amplitude), deposition time and deposition potential were examined. The linearity, repeatability, detection limit and accuracy of the method were determined. The possible interference of some cations, namely Al(III), Bi(III), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Hg(II), Mn(II), Mo(II), Ni(II), Pb(II), Sn(IV), Zn(II), and of some anions (BO$_3^{3-}$, Br$^-$, CH$_3$COO$^-$, CO$_3^{2-}$, F, HCOO$^-$, I, PO$_4^{3-}$, S$^{2-}$, Sb(V) as [Sb(OH)$_6$]$^{3-}$, Se(IV) as SeO$_3^{2-}$ and Te(IV) as [Te(OH)$_5$]$^{-}$ and [Te(OH)$_4$]$^{2-}$) was evaluated.

We also studied the evolution of the electrode surface using cyclic voltammetry (CV) and scanning electron microscopy (SEM). In this way we monitored the effect of the treatments (mechanical and electrochemical) on the gold surface. Finally, we studied the applicability of the equations commonly used for flow systems [34] to the investigated stirred system in order to evaluate the possibility to obtain information on the number of electrons transferred per molecule.

The findings of this study can be useful for analysts in order to evaluate the real potentialities of the lateral gold electrode and to choose the best conditions for the determination of As(III) by ASV.

2. Experimental

2.1. Apparatus and Reagents
Voltammetric analyses were performed with a PGSTAT 10 Eco Chemie (Utrecht, The Netherlands) potentiostat coupled to a 663 VA Metrohm (Herisau, Switzerland) stand, equipped with a working electrode (in this study: a lateral rotating solid gold electrode), an Ag/AgCl reference electrode and a glassy carbon counter electrode. The analyzer was interfaced to a personal computer. Nitrogen was used for the removal of oxygen from the test solutions.

A LEICA-Stereoscan 410 Scanning Electron Microscope was used for SEM investigations.

High purity water (HPW) obtained from a Milli-Q (Millipore, Bedford, MA, USA) apparatus was used throughout. Analytical grade reagents were used. HCl was obtained by sub-boiling distillation in a quartz still. As(III) standard solution (1000 mg l⁻¹) was prepared dissolving As₂O₃ in 1 M NaOH, then adjusting the pH to about 2 with 1 M HCl. More diluted solutions were prepared daily from the 1000 mg l⁻¹ standard.

2.2. Procedures

2.2.1. Electrode Pretreatment

The electrode was polished with a suspension of 0.3 mm alumina in HPW for 1 min. In order to avoid the drawback generally caused by this type of mechanical treatment, we adopted the procedure optimised in a previous paper [33]: alumina was suspended in water before being transferred onto the cloth. In this way, it forms a smoother layer and the electrode lifetime is extended. After the mechanical treatment the electrode was immersed three times into water and into ethanol alternatively to eliminate the remaining Al₂O₃ particles from its surface.

The electrochemical activation of the electrode surface was carried out by CV, with deaerated solutions of 0.5 M H₂SO₄ as supporting electrolyte. The electrode was
polarized between 0 and +1.50 V using a scan rate of 100 mVs\(^{-1}\); 10 cycles were applied.

The electrode was kept in 0.1 M NaOH overnight and when not in use; every day it was cleaned three times with water and ethanol alternatively and activated; the activation was repeated halfway through the day; ten voltammograms of the blank were recorded to permit a good stabilization of the background current (7 \(\mu\)A). It is important to take this aspect into account because without these initial steps a gradual decrease of the peak height is observed.

2.2.2. ASV determination of arsenic

20 ml test solutions of supporting electrolyte were delivered into the voltammetric cell and purged with nitrogen.

After a deposition step at – 0.30 V a voltammetric scan was performed. Initially, the scan parameters were i) for DP voltammetry: modulation amplitude, 0.05 V; modulation time, 0.05 ms; interval time, 0.3 ms; step potential, 0.002 V; i) for SW voltammetry: frequency, 100 Hz; step potential, 0.004 V, amplitude, 0.03 V. Initial and final potentials were - 0.30 V and +0.30 V respectively.

A cell containing 5 \(\mu\)g l\(^{-1}\) of As(III) was utilized to investigate the effects of the different parameters on the analyte signal. After the optimisation the following conditions were adopted: deposition potential, -0.30 V; deposition time, 80 s; stirring rate, 1500 rpm; supporting electrolyte, 0.25 M HCl, unless otherwise stated. For the values of the scan parameters after optimization, please refer to section 3.2.2.

Then, for the evaluation of the performance of the optimised method, after recording the voltammogram of the blank, aliquots of As were added and the corresponding signals were recorded. The detection limit was estimated as three times the standard deviation of the blank signal.
Drinking water was collected from the laboratory tap and filtered through a 0.45 µm cellulose acetate filter. 20 ml of water were transferred into the voltammetric cell, added with 0.4 ml of 12 M sub-boiling HCl and analysed as such and after spiking with 5 µgl⁻¹ of As(III).

All experiments were performed in triplicate.

2.2.3. Cyclic Voltammetry (CV)

Linear potential sweep CV experiments were performed daily for the electrochemical activation and for the monitoring of the electrode surface, polarizing the electrode between 0 and 1.50 V using a scan rate of 100 mVs⁻¹; the supporting electrolyte was 0.5 M H₂SO₄.

In order to study the electrochemical behaviour of the analyte, CV experiments were also carried out on cells containing 20 µgl⁻¹ As(III) prepared both in 0.5 M H₂SO₄, varying the potential between –0.30 and +1.50 V, and in 0.25 M HCl, varying the potential between –0.30 and +0.30 V.

3. Results and Discussion

3.1. Electrode Surface

3.1.1. Treatments and CV study of the gold surface

The importance of the pretreatment and activation steps of the active surface of gold electrodes is well known [7,23,41,42]. It is important to repeat the electrochemical conditioning step every day to maintain the electrode surface active and reproducible. Careful electrode conditioning was found to enhance the quality and reproducibility of the arsenic signal both in this work and by other authors [12,21,43].
The voltammogram obtained by CV during the activation step was also used for the daily monitoring of the electrode surface. The shape of the voltammogram obtained is reported in Fig. 1a: it is well known in literature and it identifies a clean gold surface [12,44,45].

Fig. 1. Cyclic voltammograms obtained in 0.5 M H₂SO₄ with the lateral gold electrode for a) a clean surface; b) the surface in the presence of multilayers of oxides; c) the surface after the growth of an important oxide layer; d) the surface covered by a passivating layer.

The anodic peak at +1.25 V is due to the processes of oxidation at gold surface. The nature of the species that are formed on the surface is not well known: some authors suggest the formation of a monolayer of oxides [46,47], others propose the presence of a thin layer of hydrated oxides or the formation of Au(OH)ₙ,ads [48]. Thermodynamic calculations indicated that an hypothetical isolated gold atom (with no lattice stabilization energy) should undergo oxidation in acid solution (to hydrated Au₂O₃) at ca +0.33 V [48]. This value is varied not only by the presence of the crystal lattice, but also by the experimental conditions, such as pH and properties of the supporting electrolyte.

The cathodic peak at +0.90 V is caused by the reduction of the hypothesized species. Dai et al. observed that the height of the cathodic peak varied with the efficiency of the deposition of a gold surface; they identified the value of peak intensity corresponding to the optimum deposition, and used CV in order to evaluate the quality of the deposition [46]. The cyclic voltammogram reported in Fig. 1b was recorded with an electrode which was neither stored in NaOH nor washed with ethanol and water; it shows additional peaks in
comparison to Fig. 1a, due to the electrochemistry of gold. [48] suggested that these peaks are caused by the formation of multilayers of oxides in which gold can exist in different oxidation states (Au⁰/Au⁺/Au³⁺), the presence of these layers causes a worsening of the electrode performance, thus showing the importance of the cleaning steps. After the treatments with NaOH, ethanol and water a cyclic voltammogram like that reported in Fig. 1a is again obtained. We suppose that in the presence of NaOH the surface is covered with a layer of hydroxides, that replace completely or in part the hydration layer; ethanol removes this deposited layer and water removes the traces of ethanol.

Fig. 1c shows another evolution of the electrode surface. The electrode that generated a voltammogram like this had a poor performace, i.e. it gave rise to lower stripping signals of arsenic. In fact the growth of an oxide layer on the gold hinders the deposition of the analyte on the surface. Also Feeney and Kounaves showed a similar voltammogramm in their paper: they tested different treatments (application of conditioning potential, cyclic voltammetry and sonication), but none of them enabled to recover the performances of the electrode. Only the immersion in ethanol temporarily alleviated the problem [44]. We can adfirm that after the cleaning with alumina, and the treatment with NaOH, ethanol and water the electrode worked properly again and the cyclic voltammogram of Fig. 1a was obtained.

When a voltammogram like that reported in Fig. 1d is obtained, the electrode is not working any more. No peaks appear relative to oxidation/reduction of gold. A possible explanation is the formation of many layers of oxides on the electrode surface: they form a passivating layer that prevents an efficient electron transfer, and at the same time inhibits the deposition of the analyte on the conductive layer, thus passivating the electrode. After the mechanical and chemical treatment the cyclic voltammogram
obtained is again like that reported in Fig. 1a but the sensitivity starts to gradually decrease.

3.1.2 SEM investigation

At the beginning of the study, after a few months of extensive work and the end of the life of the electrode SEM analyses were performed to investigate the status of the gold surface. Fig. 2a shows the SEM images of a brand-new electrode, before any treatment. The figure clearly shows a series of lines probably caused by the process of fabrication of the electrode. The surface is also characterised by some defects. Fig. 2b shows the SEM image obtained after a few months of work. The surface is more homogeneous and the lines are less evident. This is probably caused by the mechanical treatments with alumina that permit to level-off the structural defects. This is in contrast with our previous experience on other gold electrodes and with some papers reported in literature, stating that the hardly treatments with alumina can damage the electrode surface [33,49]. The difference is the configuration of the gold surface: the mechanical cleaning of the lateral electrode is easier than that for the frontal one. In fact, in order to have a homogeneous cleaning (abrasion) with the frontal electrode, the operator has to make small ∞-shaped movements with the cloth under the electrode surface while the electrode is stirring [49]; on the other hand, the position of the active surface in the lateral electrode ensures a uniform contact between gold and alumina, and the operator has only to maintain the cloth still on the surface while the electrode is stirring. Fig. 2c shows the SEM image obtained when the voltammogram recorded during cyclic voltammetry is like Fig. 2d (section 3.1.1). The electrode presents a spongy surface typical of oxidised metals, probably caused by the presence of chloride in solution (see section 3.2.1). We can suppose that the use of H_2SO_4 during the activation of the electrode permits to contrast this effect by eliminating the layer of oxides present on the
surface, and causing a structural reorganization of gold. Unfortunately, sulphuric acid is unsuitable as a supporting electrolyte for analysis, as shown in section 3.2.1.

Fig. 2. SEM images of the gold electrode surface when a) the electrode is new; b) after a few months of extensive work; c) when the surface is oxidised.

3.2. Effect of operating conditions

3.2.1. Supporting electrolyte

Different supporting electrolytes were tested: 0.25, 0.5 and 0.75 M HCl; 0.1 M H$_2$SO$_4$; 0.01 M HNO$_3$; a mixture of 0.25 M H$_2$SO$_4$ / 0.25 M HCl. The electrolyte solutions were tested working both in DP and in SW modes. HCl was found to be the most suitable medium, since it provided the highest and narrowest peaks for As(III). This is due to the faster charge-transfer reaction in chloride media [11,44]. High concentrations of HCl can cause the dissolution of the gold surface, due to the complexation by chloride ions. Gold can be oxidised (Au \rightarrow Au$^{3+}$ + 3e$^-$), and if the chloride ion concentration is high the complex auric chlorine ion AuCl$_4$ is formed and gold is dissolved causing a decrease of the electrode active surface (loss of sensitivity) and of the repeatability [11,30,42]. Using 0.25 M HCl we obtained higher signals than with 0.1 M HCl, and a better repeatability than with 0.5 M hydrochloric acid. Thus, 0.25 M HCl was chosen as the supporting electrolyte for the next electrochemical experiments.

3.2.2. Instrumental parameters

The effect of the different potential scan parameters on the signal of 5 µg l$^{-1}$ of arsenic was investigated, working both in DP and SW modes, using 30 s as deposition time (for the optimisation of this parameter see Section 3.2.3). In DP mode the step potential, the
interval time, the modulation amplitude and the modulation time were varied (Fig. 3). Different values of frequency, wave amplitude and step potential were examined working in SW mode (Fig. 4).

Fig. 3. The effect of (a) step potential; (b) interval time; (c) modulation amplitude; (d) modulation time on the arsenic (5µg l⁻¹) peak height. Scan mode: DP.

Fig. 4. The effect of (a) step potential; (b) amplitude; (c) frequency on the arsenic (5 µg l⁻¹) peak height. Scan mode: SW.

The trends observed for the arsenic peak following the variation of scan parameters are in agreement with theoretical predictions [50]. Working in DP mode, with the increase of the step potential, the signal increased, reflecting the increase of scan rate. An increase of interval time had the opposite effect on the analyte peak owing to a decrease in scan rate. An increase of modulation amplitude caused an increment of the signal intensity, probably due to the larger difference between the current before and after the application of the pulse, and its signal to more positive potentials. The variation of the modulation time had the opposite effect, likely because of the decrease of the faradaic current during long pulses.

As to the SW mode, when frequency and step potential were increased, the signal increased and shifted to more positive potentials, in agreement with the increase in scan rate. Higher values of these parameters caused a distortion of the signal shape. An increase of wave amplitude was responsible of an increase of the peak height, for the same reasons discussed for modulation amplitude above, and no shift of the peak potential was observed.
Both DP [21,34,43,51] and SW [7,30,52] are used in literature for the determination of As(III). SW permitted to obtain higher signals but it gave rise to a lower repeatability and a greater background signal. For these reasons DP was chosen for the next experiments.

We also studied the effect of different values of deaeration time, stirring speed and deposition potential.

Deaeration with nitrogen is necessary to reduce the background due to oxygen reduction (for the removal of the oxygen): 120 s or 60 s, working respectively with DP or SW, are sufficient to obtain good results.

We tested the effect of the stirring speed in the range 0-3000 rpm: the intensity of the signal increased with increasing of electrode rotation rate, since it influences the extent of mass transfer to the electrode. We choose an intermediate value of 1500 rpm for the next experiments.

A deposition potential of -0.30 V was chosen as it yielded the highest current response with least interference from other reactions. This value is in agreement with the data in literature. Using deposition potentials more positive than -0.40 V the determination of As(III) is more reproducible [12], while at potentials more negative than –0.35 V there is a decrease in the deposition efficiency because the reduction of water and the associated production of hydrogen (\(\text{H}_2\text{O} +2\text{e}^- \rightarrow \text{H}_2 + 2\text{OH}^-\)) starts to compete with the reduction of arsenic (\(\text{As}^{\text{III}} + 3\text{e}^- \rightarrow \text{As}\)), blocking the surface and decreasing the current due to the analyte [11,30]. At more negative potentials it is also possible that some elemental arsenic is converted to \(\text{As}^{3^-}\) with the formation of \(\text{AsH}_3\) [30]. The response of As(III) after deposition at -1.20 V, the potential commonly used for the determination of As(V), is ten times lower than that obtained using – 0.30 V. The optimal values for the parameters for DP and SW are reported in Table 1.
Table 1 Optimal electrochemical parameters values for As(III) determination.

3.3. Repeatability, Linearity, Detection Limit and Accuracy

The performance of the analytical method was evaluated using the DP scan mode in the optimal conditions.

The repeatability was evaluated with ten replicates on ten different cells containing 10 \(\mu \text{g l}^{-1} \) of As(III). The relative standard deviation was 3 %. We also evaluated the repeatability for ten determinations of the same amount of analyte in the same cell: the relative standard deviation was 4 % and we noticed a slow decrease of the peak height from 11.5 to 10.5 mA in these consecutive determinations. This behaviour is in agreement with the results of Salaun et al. [12] and it is due to the deposition of chloride on the electrode surface.

The linearity of the method was investigated in the range 0.1-15 \(\mu \text{g l}^{-1} \). The results obtained are summarized in Table 2. The analytical response strongly depended on the deposition time adopted. Using 30 s as deposition time in all the considered range, the peak height increased up to 5 \(\mu \text{g l}^{-1} \), then the response slowly and gradually flattened off, yielding a very low correlation coefficient \((R^2 = 0.9534)\). The decrease in sensitivity at relatively high concentrations of As is caused by a coating of the electrode surface with the deposited As(0) which is non-conductive [53]. At low As concentrations longer deposition time permits to acquire better defined peaks. To obtain a better linearity of response we used 60, 30 and 10 s in the ranges 0.1-1, 1-5 and 5-15 \(\mu \text{g l}^{-1} \) respectively \((R^2 > 0.992)\).
Table 2 Slope, intercept and R^2 for the calibration curves obtained in different concentration ranges using different deposition times.

The limit of detection was estimated as $\text{LOD} = 3\sigma_B / \text{slope of the calibration curve}$ for the range 1-15 μgl^{-1} and was found to be 0.060 μgl^{-1}. This is in good agreement with the LOD reported by Metrohm (0.05 μgl^{-1}) with a lateral gold electrode [43]. Other authors obtained LOD = 0.015 μgl^{-1} using a gold microelectrode [12] or LOD = 0.1 μgl^{-1} with gold ultramicroelectrode arrays [30].

The accuracy of the procedure was tested by analysing solutions containing known concentrations, 2.50 and 0.10 μgl^{-1}, of As. The concentrations found were 2.48 ± 0.11 μgl^{-1} (relative error = -1 %) and 0.104 ± 0.020 (relative error = +4 %), using 30 and 60 s as deposition time respectively. Therefore the accuracy of the method can be considered good.

3.5. Electrode rotation rate

The sensitivity of stripping voltammetry strongly depends on the amount of substance deposited at the electrode; therefore the rate of the substance flux from the bulk of the solution toward the electrode (i.e. the hydrodynamic conditions) is very important [11].

The deposition current (i.e. the current flowing during the deposition step) as well as the stripping peak intensity at a rotating disk electrode is proportional to ω^a (where ω is the rotation rate and a is a constant depending on the hydrodynamic properties of the electrode configuration) [41]. For laminar flow conditions, a usually ranges from 0.3 to 0.5. The equation $i = C \cdot \omega^a$, where i is the stripping current, C is the analyte concentration, can be written as $\log(i) = a\cdot\log(\omega) + \log(c)$. Fig. 5a and 5b show the
relationship between \(\log(i) \) and \(\log(\omega) \) found in this work using DP and SW respectively.

Fig. 5. The relationship between \(\log(i) \) and \(\log(\omega) \) at the lateral gold electrode in the presence of 1 \(\mu \text{g}l^{-1} \) of As using a) DP and b) SW.

We obtained \(a \) from the slopes of the two lines. Working in DP mode we found \(a = 0.34 \) with \(R^2 = 0.9495 \), while working in SW \(a = 0.55 \) with \(R^2 = 0.998 \). In spite of the low \(R^2 \) value our result obtained with DP is in good agreement with that of Sun et al. [11]: they found \(a = 0.35 \) working in DP with a gold film electrode.

The correlation was better in SW and our result was similar to the value frequently found (\(a = 0.5 \)) for a mercury film electrode and when a reversible reaction takes place[54].

3.6. Interferences

The interference of several cations, namely Al(III), Bi(III), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Hg(II), Mn(II), Mo(II), Ni(II), Pb(II), Sn(IV), Zn(II), and of some anions (\(\text{BO}_3^{3^-}, \text{Br}^-, \text{CH}_3\text{COO}^-, \text{CO}_3^{2-}, \text{F}^-, \text{HCOO}^-, \Gamma, \text{PO}_4^{3-}, \text{S}^2-, \text{Sb(V)} \) as \([\text{Sb(OH)}_6]^-\), \text{Se(IV)} \) as \(\text{SeO}_3^{2-} \) and \(\text{Te(IV)} \) as \([\text{Te(OH)}_5]\) and \([\text{Te(OH)}_4]^{2-}\)) was evaluated.

Voltammograms of a solution with 5 \(\mu \text{g}l^{-1} \) of As(III) were recorded in the presence of each species (added into the polarographic vessel in 1:1 and 1:2 concentration ratios with respect to arsenic). The presence of most cations (Bi(III), Cd(II), Cr(III), Cu(II), Fe(III), Hg(II), Mn(II), Mo(II), Ni(II), Sn(II), Zn(II)) gives rise to a decreasing of the intensity of arsenic peak.

Regarding the considered cations we observed that:
Cd(II), Cu(II), Hg(II) and Pb(II) gave rise to another peak at +0.2 V, +0.35 V, +0.38 V and -0.18 V respectively.

The effect of Cu(II) on the determination of As(III) is widely discussed in literature [11,30]. In fact, it is well known that Cu forms an intermetallic compound with As [11,46] that causes the decrease of the analyte signal. Some researchers, working with mercury electrodes, added copper to promote the deposition of As on the electrode surface [34]. In the presence of Cu(II), we noticed a strong memory effect, that remained for long time, even after some cleaning steps. The use of a nanostructured gold electrode would permit to overcome the problem, thanks to the possibility to dissolve the gold surface and to deposite a new one [55].

Hg(II) caused a decrease in the analyte peak height. This element can interfere with the determination of arsenic, due to the competition for the sites on the gold surface [30,46]. In fact Hg interacts very strongly with Au and this interaction is particular relevant at very negative potentials.

Regarding the anions we observed in particular that:

- An addition of Br\(^{-}\), F\(^{-}\) and I\(^{-}\) caused a decrease of the peak height. This is probably due to the high affinity of arsenic for the halogens.
- Adding Sb(V) in ratio 1:1 the analyte signal apparently increased. This is caused by the fact that antimony produces a peak at the same potential as that of As(III) [12].

After the addition of S\(^{2-}\), Se(IV), Te(IV) the signal of As(III) decreased. This is probably caused by the formation of an intermetallic compounds (e.g. As\(_2\)S\(_3\), As\(_2\)Te\(_3\)) [56,57].

3.7. Applicability to a real sample

Preliminary measurements about the applicability of the procedure to the analysis of
drinking water were made. No arsenic peak was observed in the sample, therefore the water was spiked with 5 µg/l of arsenic. The concentration was determined with the standard addition method. The result obtained was 4.12 ± 0.04 µg/l (n=3). Although the concentration was underestimated (-18 %) and further optimization is necessary to increase the accuracy of this determination, we think that this result represents a good starting point because it shows that the procedure is able to determine arsenic at concentrations lower than the maximum admissible level according to the International World Health Organization (WHO), that is 10 µg/l [58].

3.8. CV Study of As(III) electrochemical behaviour

CV is a powerful technique to investigate the mechanism of charge transfer at the electrode/electrolyte interface.

Fig. 6 shows the cyclic voltammograms of solutions containing 20 µg/l of As(III) prepared either in 0.5 M H₂SO₄ (the medium in which the activation step was carried out) varying the potential between –0.30 and +1.50 V (Fig. 6a, 6b), or in 0.25 M HCl (supporting electrolyte) varying the potential between –0.30 and +0.30 V (Fig. 6c, 6d). The figures also report the voltammograms of the blanks obtained in the same conditions. It is important to underline that in chloride-containing solutions, the potential should not exceed +0.55 V since at more positive values, the surface of the gold electrode can be altered because of the adsorption of chlorides or formation of an oxide [30]. The potential was varied both in “reverse scan” (from negative to positive potentials and return) (Fig. 6a, 6c) and in “direct scan” (from positive to negative and return) (Fig. 6b, 6d).
Fig. 6. Voltammograms of blank (-----) and of 20 μg/l of As(III) (—) obtained working in a) reverse scan in 0.5 M H₂SO₄; b) direct scan in H₂SO₄; c) reverse scan in 0.25 M HCl; d) direct scan in HCl.

The figures show that the arsenic peak intensities are higher in H₂SO₄ (Fig. 6a, 6b) than in HCl (6c and 6d). The difference between the anodic and cathodic peak heights in voltammograms recorded in HCl is caused by the fact that the system is not completely reversible [59]. This difference is more evident in H₂SO₄ due to the different potential ranges: for both solutions (Fig. 6a, 6c) arsenic is present as As(0) at –0.30 V and it is oxidised to As(III) at +0.10 V, but in HCl the scan stops at +0.30 V while in H₂SO₄ it continues until +1.50 V. In these conditions As(III) is easily oxidised to As(V), which is considered electroinactive except in extreme conditions of high acid concentrations or at very negative potentials like -1.20 V [12,34,38]; for this reason it is not reduced back to As(III) in the inverse scan. The cathodic peak is caused by the residual fraction of As(III) that was not reduced to As(0). The same considerations are valid for the voltammograms in Fig. 6b and in Fig. 6d. Some authors observed the reduction peak of As(III) at -0.30 V, while we found it very close to 0 V. According to Brusciotti and Duby [60], the peak at -0.30 V is not caused by the reduction of As(III), but by the development of hydrogen from the solution. Sun et al., working in 2M HCl, found the oxidation peak at +0.15 V and the reduction peak at 0 V, in agreement with our observations [11].

The separation between the anodic and cathodic peaks for a reversible reaction is expressed by the equation \(\Delta E = |E_{an} - E_{cat}| = 59/n \) [50]. Assuming the approximation that the couple As(III)/As is reversible, we obtained \(n = 0.48, 0.47, 0.48 \) and 0.49 from voltammograms a,b,c,d respectively. Our results confirm that obtained by Feeney and Kounaves: they studied the electrochemical behaviour of As(III) in 2 M HCl with a
drop mercury drop electrode and found $n = 0.4$ instead of the theoretical value of 3
\((\text{deposition step: } \text{As}^{III} + \text{Au} + 3e^- \rightarrow \text{As} + \text{Au}; \text{stripping step: } \text{As} + \text{Au} \rightarrow \text{As}^{III} + \text{Au} + 3e^-)\) [34]. Moreover they demonstrated that the electron-transfer process is slow and approaches electrochemical irreversibility. Since elemental arsenic is a very poor conductor of electricity, the oxidation peak current was found to be limited when the active surface of the electrode was fully covered with elemental arsenic [30].

Moreover, the current in a semi-reversible process is lower than that expected from a reversible process, because it depends also on the coefficient of electronic transfer (α), whereas the current does not depend on this parameter for a reversible process.

Jia et al. using a Au(111) single crystal electrode in a phosphate solution at pH = 1.0 containing NaAsO$_2$, calculated the cathodic transfer coefficient (α) of the rate-determining step with Tafel’s law $\eta = E_{eq} - E = RT/\alpha n F \log i/i_0$. They found $\alpha = 0.42$, a value that reflects a semi-reversible process [59].

3.9. Approximation of a stirred system to a flow system

The behaviour of flowing solutions is well described by some laws. The response (i.e. the measured current) of an electrochemical detector is governed by the convective diffusion towards the electrode surface and hence by the hydrodynamic conditions of the flow. A general equation for the limiting current is $i_l = k \ n \ F \ C^* \ D \ (Sc)^{\beta} \ b \ (Re_x)^{\alpha}$, where k is a dimensionless constant, n the number of electrons transferred per molecule, F the Faraday constant (96485.3999 C/mol), C^* the bulk concentration of the electroactive species, D its diffusion coefficient, Sc the dimensionless Schmidt number ($\nu \ D^{1/2}, \nu$ being the kinematic viscosity), b a measure for the electrode width, Re_x the dimensionless Reynolds number ($\nu \ l_x \ l^{1/2}, \nu$ being the mean linear velocity of the fluid and l_x the characteristic length of the electrode). The values of β and α are determined
by the specific characteristics of the hydrodynamic conditions. The values of \(k \), \(b \), and \(l_x \) depend on the cell geometry [40].

In order to understand if it is possible to apply these laws to our stirred system, we entered our data in equation in order to estimate the number of electrons involved in the considered process \((n = i/k \ b \ F \ CD \ \cdot \ (Sc)^{\beta} \ \cdot \ (Re)^{\gamma}) \). We adapted some terms of this equation to our particular system. Briefly we considered that:

- \(i \) is the peak height (\(\mu \)A);
- \(k = 2 \) for a rotating disk electrode [61]
- \(b \) in this case is the radius of the electrode, \(b = 0.35 \) cm;
- \(F \) is Faraday’s constant;
- \(D = k_b T / 6 \pi r_i \eta \), where \(k_b \) is the Boltzmann’s constant (1.3806505 \(\times \) \(10^{-23} \) JK\(^{-1}\)), \(T \) is the absolute temperature (272.15 K), \(r_i \) the ionic radius of the considered species (for As(III), \(r_i = 5.8 \times 10^{-11} \) m), \(\eta \) the viscosity coefficient of the solution (for 0.25 M HCl, \(\eta = 1.050 \times 10^{-3} \) Pa s): we obtained \(D = 3.528 \times 10^{-5} \) cm\(^2\)s\(^{-1}\);
- \(Sc = \eta / \rho \ D = \nu / D \), where \(\rho \) is the density of the solution (for 0.25 M HCl, \(\rho = 1.004 \) kg\(^1\)), \(D = 3.528 \times 10^{-9} \) m\(^2\)s\(^{-1}\): we obtained \(Sc = 297 \);
- \(Re = \nu \rho L / \eta = \nu L / \nu \). We considered \(\nu \) as the average velocity of a particle present in cell at a mean distance from the electrode (\(\nu = 2 \pi r f x \), where \(r \) is the average distance of a particle from the electrode, 9.5 \(\times \) \(10^{-3} \) m (estimated taking into account the cell size); \(f \) is the minimum value of the stirring rate which can be set with the instrument utilized, 3 Hz; \(x \) is a multiplicative coefficient of \(f \), such that \(xf \) is the stirring rate adopted during the experiments (\(x = 3 \)); \(L \) is a length that depends on the nature and on the geometry of the cell (we assumed that \(L \) could be interpreted as either i) the width of the cell in correspondence of the active surface (\(L_1 \)), or ii) the mean distance that a species has to travel to reach the electrode (\(L_2 \)); we obtained \(L_1 = 0.03 \) and \(L_2 = 0.032 \) respectively): we obtained \(Re_1 = 15400 \) and \(Re_2 = 16427 \).
– β and a are two constants determined by the hydrodynamic characteristics of the system: for a rotating disk electrode $\beta = 1/3$ [40,61] and from the calculations reported in section 3.5. $a = 0.34$.

A cell containing 100 μg$^{-1}$ (1.334 mmolcm$^{-3}$) of As(III) was used to collect the data for this calculation. The measurement was carried out without deposition, since the deposition time would influence the intensity of the current. The number of electrodes obtained is $n_1 = 0.48$ or $n_2 = 0.48$ working in DP and $n_1 = 0.46$ or $n_2 = 0.45$ working in SW.

Even if the application of this equation on our system is a constrainment, the number of electrons found with this approach is in good agreement with the values found with CV demonstrating that it is possible to apply the equations generally applied to the flow systems also to this type of stirred system.

4. Conclusions

The results obtained showed the efficiency of the lateral gold electrode for the determination of low concentrations of As(III) by anodic stripping voltammetry. The repeatability, sensitivity and accuracy are good.

We observed that the presence of some cations and anions in solution interfered with the determination of As(III), in particular Cu(II), Hg(II), Br$^-$, F$^-$ and I$^-$. Our results showed the importance to repeat the electrochemical conditioning step every day and to perform the mechanical cleaning when necessary in order to maintain the electrode surface active and reproducible. The voltammogram obtained by CV during the activation step can be also used for the daily monitoring of the electrode surface. CV can be an alternative to SEM, which is not available in many analytical laboratories, to
check the status of the gold layer and decide about the need of a mechanical treatment or even the substitution of the electrode.

We demonstrated that it is possible to apply the equations generally used for flow systems to the investigated stirred system in order to calculate the number of electrons involved in the electron transfer process. The value found was in good agreement with that obtained by CV study and with the literature data.

Acknowledgements

We thank Prof. Ghiotti and Dr. Morandi, Department of Inorganic, Physical and Materials Chemistry, University of Torino, for the SEM analyses.

We thank the Italian Ministry of University and Research (MIUR, PRIN, Rome) for financial support.

References

Table 1

Optimal electrochemical parameters values for As(III) determination.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DP</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval time</td>
<td>0.1 s</td>
<td></td>
</tr>
<tr>
<td>Modulation amplitude</td>
<td>0.15 V</td>
<td></td>
</tr>
<tr>
<td>Step potential</td>
<td>0.018 V</td>
<td>0.035 V</td>
</tr>
<tr>
<td>Wave amplitude</td>
<td></td>
<td>0.15 V</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>145 Hz</td>
</tr>
<tr>
<td>Scan rate</td>
<td>0.18 V/s</td>
<td>5.07 V/s</td>
</tr>
<tr>
<td>Deaeration time</td>
<td>120 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Stirring speed</td>
<td>1500 rpm</td>
<td>1500 rpm</td>
</tr>
<tr>
<td>Deposition potential</td>
<td>- 0.30 V</td>
<td>- 0.30 V</td>
</tr>
</tbody>
</table>
Table 2
Slope, intercept and R^2 for the calibration curves obtained in different concentration ranges using different deposition times.

<table>
<thead>
<tr>
<th>Range (μg l$^{-1}$)</th>
<th>Deposition time (s)</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1-1</td>
<td>60</td>
<td>36.89±3.29</td>
<td>0.19±0.71</td>
<td>0.9921</td>
</tr>
<tr>
<td>1-5</td>
<td>30</td>
<td>13.31±0.68</td>
<td>-1.04±1.48</td>
<td>0.9974</td>
</tr>
<tr>
<td>5-15</td>
<td>10</td>
<td>9.54±0.15</td>
<td>0.75±1.63</td>
<td>0.9997</td>
</tr>
<tr>
<td>0.1-15</td>
<td>Variable</td>
<td>9.15±0.22</td>
<td>5.91±1.38</td>
<td>0.9961</td>
</tr>
<tr>
<td>0.1-15</td>
<td>30</td>
<td>7.03±0.59</td>
<td>6.60±3.74</td>
<td>0.9534</td>
</tr>
</tbody>
</table>
Fig. 1. Cyclic voltammograms obtained in 0.5 M H₂SO₄ with the lateral gold electrode for a) a clean surface; b) the surface in the presence of multilayers of oxides; c) the surface after the growth of an important oxide layer; d) the surface covered by a passivating layer.
Fig. 2. SEM images of the gold electrode surface when a) the electrode is new; b) after a few months of extensive work; c) when the surface is oxidised.
Fig. 3. The effect of (a) step potential; (b) interval time; (c) modulation amplitude; (d) modulation time on the arsenic (5µg/l) peak height. Scan mode: DP.
Fig. 4. The effect of (a) step potential; (b) amplitude; (c) frequency on the arsenic (5 µg l⁻¹) peak height. Scan mode: SW.
Fig. 5. The relationship between log(i) and log(ω) at the lateral gold electrode in the presence of 1 μg l⁻¹ of As using a) DP and b) SW.
Fig. 6. Voltammograms of blank (-----) and of 20 µg l⁻¹ of As(III) (—) obtained working in a) reverse scan in 0.5 M H₂SO₄; b) direct scan in H₂SO₄; c) reverse scan in 0.25 M HCl; d) direct scan in HCl.