
23 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Regularity and decay of solutions of nonlinear harmonic oscillators

Published version:

DOI:10.1016/j.aim.2011.10.018

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/93237 since 2017-05-19T15:13:06Z



 
 
This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here 
by agreement between Elsevier and the University of Turin. Changes resulting from the publishing 
process - such as editing, corrections, structural formatting, and other quality control mechanisms - 
may not be reflected in this version of the text. The definitive version of the text was subsequently 
published in Advances in Mathematics 229 (2012) no. 2, pp. 1266-1299, doi: 
10.1016/j.aim.2011.10.018. 
 
You may download, copy and otherwise use the AAM for non-commercial purposes provided that 
your license is limited by the following restrictions: 
 
(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND 
license.  

(2) The integrity of the work and identification of the author, copyright owner, and publisher must be 
preserved in any copy.  

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), doi: 10.1016/j.aim.2011.10.018. 
 



REGULARITY AND DECAY OF SOLUTIONS OF NONLINEAR
HARMONIC OSCILLATORS

MARCO CAPPIELLO AND FABIO NICOLA

Abstract. We prove sharp analytic regularity and decay at infinity of solu-
tions of variable coefficients nonlinear harmonic oscillators. Namely, we show
holomorphic extension to a sector in the complex domain, with a corresponding
Gaussian decay, according to the basic properties of the Hermite functions in
Rd. Our results apply, in particular, to nonlinear eigenvalue problems for the
harmonic oscillator associated to a real-analytic scattering, or asymptotically
conic, metric in Rd, as well as to certain perturbations of the classical harmonic
oscillator.

1. Introduction

The harmonic oscillator H = −∆ + |x|2 in Rd represents one of the simplest and
yet more useful models for several physical phenomena, and its relevance both in
Mathematical Analysis and Physics is well-known. Its eigenfunctions, namely the
Hermite functions hα(x), are given by the formulae hα(x) = pα(x)e−|x|

2/2, α ∈ Nd,
where pα is a polynomial of degree |α| (see e.g. [29]). Two remarkable features
of the Hermite functions are their Gaussian decay at infinity, and their very high
regularity. In fact, we have

(1.1) |hα(x)| . e−c|x|
2

for x ∈ Rd, |ĥα(ξ)| . e−c|ξ|
2

for ξ ∈ Rd

for every c < 1/2, where ĥα(ξ) denotes the Fourier transform of hα. The functions
hα in fact extend to entire functions hα(x + iy) in the complex space Cd and, for
every 0 < ε < 1, we have the estimates

(1.2) |hα(x+ iy)| . e−c|x|
2

in the sector |y| < ε(1 + |x|),
for some c > 0.

In this paper we wonder to what extent these properties continue to hold for non-
linear perturbations of the harmonic oscillator, possibly with variable coefficients.
Relevant models are equations of the type

(1.3) −∆u+ |x|2u− λu = F [u], λ ∈ C,
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with a nonlinearity of the form F [u] =
∑
|α|+|β|≤1 cαβx

β∂αuk, k ≥ 2. Cappiello,

Gramchev and Rodino in [7] showed by a counterexample that generally, even in
dimension d = 1, there can exist Schwartz solutions of (1.3) which do not extend
to entire functions in C. In fact, a refinement of their argument (see Section 5
below) shows that a sequence of complex singularities may occur, approaching a
straight line at infinity. On the other hand, as a positive result, it was proved in
[7] that every solution u ∈ Hs(Rd), s > d/2 + 1, of (1.3) extends to a holomorphic
function u(x+ iy) on the strip {z ∈ Cd : |Im z| < T} and satisfies there an estimate

of the type |u(x + iy)| ≤ Ce−c|x|
2
, for some c, C, T > 0. Similar results, namely,

holomorphic extension to a strip and super-exponential decay, were proved in [7, 10]
for more general classes of elliptic operators with polynomial coefficients.

The above mentioned negative result as well as the estimates (1.2), valid in a
sector in the linear case, suggest the possibility, even in the presence of certain non-
linear perturbations, of a holomorphic extension of the solutions to a sector, rather
than only a strip, with a corresponding Gaussian decay estimate. In this paper
we show, for a large class of equations including (1.3), even with non-polynomial
coefficients, that this is in fact the case. The techniques developed here actually
will apply to much more general differential (and pseudodifferential) operators.
To motivate the class of operators we will consider, we first discuss a special yet
important example.

Consider the equation Pu = F [u], with

(1.4) P =
d∑

j,k=1

gjk(x)∂j∂k +
d∑

k=1

bk(x)∂k + V (x),

where the functions gjk, bk, and the potential V are real-analytic in Rd, and satisfy
the following conditions.

We suppose that the matrix
(
gjk
)

is real and symmetric and that there exists a
constant C > 0 such that

(1.5)
d∑

j,k=1

gjk(x)ξjξk ≥ C−1|ξ|2 ∀x, ξ ∈ Rd,

as well as

(1.6) |∂αgjk(x)|+ |∂αbk(x)| ≤ C |α|+1α!〈x〉−|α| ∀x ∈ Rd, α ∈ Nd,

where 〈x〉 = (1 + |x|2)1/2. Moreover we assume that

(1.7)

{
ReV (x) ≥ C−1|x|2 for |x| > C,

|∂αV (x)| ≤ C |α|+1α!〈x〉2−|α| ∀x ∈ Rd, α ∈ Nd
.
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We consider a nonlinearity of the form

(1.8) F [u] =
∑

2≤h+l≤N
1≤j≤d

Fjhl(x)uh(∂ju)l,

for some N ∈ N, where

(1.9) |∂αFjhl(x)| ≤ C |α|+1α!〈x〉1−min{1,l}−|α| ∀x ∈ Rd, α ∈ Nd.

Then, we claim that

Under these assumptions, every solution u ∈ Hs(Rd), s > d/2 + min{1, l}, of
the equation Pu = F [u], extends to a holomorphic function u(x+ iy) in the sector
{z = x + iy ∈ Cd : |y| < ε(1 + |x|)} of Cd for some ε > 0, satisfying there the

estimates |u(x+ iy)| ≤ Ce−c|x|
2
, for some constants C > 0, c > 0.

Notice that if V (x) satisfies (1.7) then also V (x)− λ, λ ∈ C, satisfies it, so that
the above result applies to the corresponding eigenvalue problem as well. In the
linear case (F [u] = 0) this result intersects the wide literature on the decay and
regularity of eigenfunctions of Schrödinger operators, cf. Agmon [1], Nakamura
[23], Sordoni [28], Rabinovich [25], Rabinovich and Roch [26] and many others.

We also remark that suitable perturbations of the standard harmonic oscillator
fall in this class of equations, as well as the harmonic oscillator associated to a
real-analytic scattering, or asymptotically conic, Riemannian metric in Rd (see
Section 5 below). For a detailed analysis of these metrics and their important role
in geometric scattering theory we refer to Melrose [20, 21], Melrose and Zworski
[22].

Let us now state our main result in full generality. We consider nonlinear equations
whose linear part is a differential or even pseudodifferential operator

(1.10) Pu(x) = p(x,D)u(x) = (2π)−d
∫

Rd
eixξp(x, ξ)û(ξ) dξ,

with symbol p in the class Γma (Rd),m > 0, defined as the space of all functions
p ∈ C∞(R2d) satisfying the estimates

(1.11) |∂αξ ∂βxp(x, ξ)| ≤ C |α|+|β|+1α!β!(1 + |x|+ |ξ|)m−|α|〈x〉−|β|

for all (x, ξ) ∈ R2d, α, β ∈ Nd, and for some positive constant C independent of
α, β. This class is particularly suited to study harmonic oscillators with variable
analytic coefficients and it is inspired by the class considered by Shubin [27] and
Helffer [16] which was in fact modelled on the harmonic oscillator and its real
powers. However, a differential operator belongs to that class only if its coefficients
are polynomial, which is an unpleasant limitation. With respect to [16], [27], we
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overcome this restriction by assuming the less demanding estimates (1.11), which
at the same time imply that the symbol p is real-analytic. For example, a function

p(x, ξ) =
∑
|α|≤m

cα(x)ξα

belongs to Γma (Rd) if the coefficients cα satisfy |∂βcα(x)| ≤ C |β|+1β!〈x〉m−|α|−|β|.
We shall assume moreover the symbol p of our operator to be Γ-elliptic, in the
sense that, for some constant R > 0,

(1.12) inf
|x|+|ξ|≥R

(1 + |x|+ |ξ|)−m|p(x, ξ)| > 0.

This is clearly a global version of the classical notion of ellipticity. For example,
by (1.5)–(1.7), the symbol of the operator in (1.4) belongs to Γ2

a(Rd) and satisfies
(1.12) with m = 2.

We moreover consider a nonlinearity of the form

(1.13) F [u] =
∑

h,l,ρ1,...,ρl

Fh,l,ρ1...ρl(x)
l∏

k=1

∂ρku,

where the above sum is finite and h, l ∈ N, l ≥ 2, ρ1, . . . , ρl ∈ Nd satisfy the condi-
tion h + max{|ρk|} ≤ max{m − 1, 0}. We assume that the functions Fh,l,ρ1...ρl(x)
satisfy the following estimates

(1.14) |∂βFh,l,ρ1...ρl(x)| ≤ C |β|+1β!〈x〉h−|β|,

for some positive constant C depending on h, l, ρ1, . . . , ρl and independent of β.
Our main result is the following.

Theorem 1.1. Let p ∈ Γma (Rd),m > 0, satisfy (1.12) and let F [u] be of the form
(1.13), (1.14) (possibly with some factors in the product replaced by their conju-
gates). Assume that u ∈ Hs(Rd), s > d/2+maxk{|ρk|} is a solution of the equation
Pu = F [u]. Then u extends to a holomorphic function u(x+ iy) in the sector

(1.15) {z = x+ iy ∈ Cd : |y| < ε(1 + |x|)}

of Cd, for some ε > 0, satisfying there the estimates

(1.16) |u(x+ iy)| ≤ Ce−c|x|
2

,

for some constants C > 0, c > 0. The same holds for all the derivatives of u.

The linear case F [u] = 0 deserves a special interest and will be treated in detail
in Section 5. We emphasize the fact that the form of the domain of holomorphic
extension as a sector is, in a sense, completely sharp, even for the model (1.3) (see
Section 5).
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Let us briefly compare our result with those in the existent literature. Several
papers were devoted to the problem of holomorphic extension to a strip and ex-
ponential decay of solutions of certain semilinear elliptic equations arising in the
theory of solitary waves or bound states, whose model is −∆u + u = |u|p−1u,
cf. Beresticky and Lions [2], Bona and Grujic’ [4], Bona and Li [5], [6], Biagioni
and Gramchev [3], Gramchev [12], Cappiello, Gramchev and Rodino [8], [9] and
the references therein; see also our recent paper [11] for the extension to a sec-
tor. However, as it is clear from our model (1.3), we consider a different class of
equations here, and in fact we deal with Gaussian, rather than exponential decay.
Instead, as already mentioned, a class similar to the present one was considered in
[7], where the problem of the extension to a strip, combined with super-exponential
decay, was addressed. The main novelties of the present work are the possibility
of treating non-polynomial coefficients and nonlinearities, and the achievement of
the optimal extension result, namely to a sector. Finally, we stress the fact that
the machinery developed in the present paper should hopefully apply to evolution
counterparts of the above equations, in the spirit of Hayashi et al., see [13], [14].
It seems interesting, in particular, to find lower bounds estimates on the width of
the above sector, depending on time. We do not consider these topics here, but we
plan to devote a future paper to them.

The paper is organized as follows. In section 2 we list some known factorial and
binomial estimates and we collect some basic properties of the pseudodifferential
operators introduced before, which will be instrumental in the proofs of our results.
In Section 3 we introduce a suitable space of analytic functions which exploits the
two properties (1.15) and (1.16). Section 4 is devoted to the proof of Theorem 1.1
which is based on an iterative scheme on the space defined in Section 3. Finally, in
Section 5 we give some concluding remarks. In particular, we read our results on
the models introduced above and treat in detail their application to the Schrödinger
operator in Rd with a scattering metric. Finally, we discuss the sharpness of our
results for what concerns the shape of the domain of the holomorphic extension as
a sector of Cd.

2. Notation and preliminary results

2.1. Factorial and binomial coefficients. We use the usual multi-index nota-
tion for factorial and binomial coefficients. Hence, for α = (α1, . . . , αd) ∈ Nd we
set α! = α1! . . . αd! and for β, α ∈ Nd, β ≤ α, we set

(
α
β

)
= α!

β!(α−β)!
.

The following inequality is standard and used often in the sequel:

(2.1)

(
α

β

)
≤ 2|α|.
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Also, we recall the identity∑
|α′|=j
α′≤α

(
α

α′

)
=

(
|α|
j

)
, j = 0, 1, . . . , |α|,

which follows from
∏d

i=1(1 + t)αi = (1 + t)|α|, and gives in particular

(2.2)

(
α

β

)
≤
(
|α|
|β|

)
, α, β ∈ Nd, β ≤ α.

The last estimate implies in turn, by induction,

(2.3)
α!

δ1! . . . δj!
≤ |α|!
|δ1|! . . . |δj|!

, α = δ1 + . . .+ δj,

as well as

(2.4)
α!

(α− β)!
≤ |α|!
|α− β|!

, β ≤ α.

Finally we recall the so-called inverse Leibniz’ formula:

(2.5) xβ∂αu(x) =
∑

γ≤β, γ≤α

(−1)|γ|β!

(β − γ)!

(
α

γ

)
∂α−γ(xβ−γu(x)).

2.2. Pseudodifferential Operators. We collect here some basic properties of the
class Γma (Rd) defined by the estimates (1.11) and of the corresponding operators
(1.10). Actually, for our purposes it is not necessary to develop a specific calculus
for the analytic symbols of Γma (Rd). We shall deduce the properties we need from
those of the larger class Γm(Rd) defined as the space of all functions p ∈ C∞(R2d)
satisfying the following estimates: for every α, β ∈ Nd there exists a constant
Cα,β > 0 such that

(2.6) |∂βx∂αξ p(x, ξ)| ≤ Cα,β(1 + |x|+ |ξ|)m−|α|〈x〉−|β|

for every x, ξ ∈ Rd. Clearly Γma (Rd) ⊂ Γm(Rd). We shall denote by OPΓm(Rd)
(respectively OPΓma (Rd)) the class of pseudodifferential operators with symbol in
Γm(Rd) (respectively in Γma (Rd)). We endow Γm(Rd) with the topology defined by
the seminorms

‖p‖(Γm)
N = sup

|α|+|β|≤N
sup

(x,ξ)∈R2d

{
|∂αξ ∂βxp(x, ξ)|(1 + |x|+ |ξ|)−m+|α|〈x〉|β|

}
, N ∈ N.

The properties of Γm(Rd) follow from the general Weyl-Hörmander’s calculus in
[18, Chapter XVIII]; with the notation used there, Γm(Rd) = S(M, g), with the
weight M(x, ξ) = (1 + |x|2 + |ξ|2)m/2 and the metric

gx,ξ(y, η) =
|dy|2

1 + |x|2
+

|dη|2

1 + |x|2 + |ξ|2
.
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We also refer the reader to [24, Chapter 1] for an elementary and self-contained pre-
sentation; with the notation in [24, Definition 1.1.1] we have Γm(Rd) = S(M ; Φ,Ψ),
with M(x, ξ) as above and

Φ(x, ξ) = 〈x〉, Ψ(x, ξ) = (1 + |x|2 + |ξ|2)1/2.

Now, if p ∈ Γm(Rd) then p(x,D) defines a continuous map S(Rd) → S(Rd)
which extends to a continuous map S ′(Rd)→ S ′(Rd). The composition of two such
operators is therefore well defined in S(Rd) and in S ′(Rd); more precisely, if p1 ∈
Γm1(Rd) and p2 ∈ Γm2(Rd), then p1(x,D)p2(x,D) = p3(x,D) with p3 ∈ Γm1+m2(Rd)
and the map (p1, p2) 7→ p3 is continuous Γm1(Rd)×Γm2(Rd)→ Γm3(Rd). Moreover
we have that

⋂
m∈R

Γm(Rd) = S(R2d). In particular, operators with Schwartz symbols

are globally regularizing, i.e. they map continuously S ′(Rd) into S(Rd).
Operators in OPΓm(Rd) are also bounded on certain weighted Sobolev spaces.

We consider, for simplicity, the case of integer positive exponents (we will only
need this case, see [27] for the general case). For s ∈ N, we define

(2.7) Qs(Rd) = {u ∈ L2(Rd) : ‖u‖Qs :=
∑

|α|+|β|≤s

‖xβ∂αu‖L2 <∞}.

We recall that
⋂
s∈N

Qs(Rd)S(Rd). Now, if P ∈ OPΓm(Rd), m ∈ Z, m ≤ s, we have

P : Qs(Rd)→ Qs−m(Rd) continuously with

‖p(x,D)‖B(Qs,Qs−m) ≤ C‖p‖(Γm)
N

for suitable C > 0, N ∈ N depending only on s,m and on the dimension d; see [24,
Proposition 1.5.5,Theorem 2.1.12]. Moreover, for m ∈ Z, m ≤ s, there exists an
operator T ∈ OPΓ−m(Rd) which gives an isomorphism Qs−m(Rd)→ Qs(Rd).

We will also need the following Schauder’s estimates for the weighted Sobolev
spaces Qs(Rd) in (2.7).

Proposition 2.1. Let s ∈ N, s > d/2. There exists Cs > 0 such that

‖uv‖Qs ≤ Cs‖u‖Qs‖v‖Qs ∀u, v ∈ Qs(Rd).

Proof. We have

‖uv‖Qs =
∑

|α|+|β|≤s

‖xβ∂α(uv)‖L2 =
∑

|α|+|β|≤s

∑
γ≤α

(
α

γ

)
‖xβ∂α−γu · ∂γv‖L2

≤ 2s
∑

|α|+|β|≤s

∑
γ≤α

‖xβ∂α−γu‖Lp‖∂γv‖Lq ,
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where 1 ≤ p, q ≤ ∞ are chosen to satisfy 1
p

+ 1
q

= 1
2
, and 1

2
< 1

p
+ |γ|

d
, 1

2
< 1

q
+ s−|γ|

d
.

This is possibile because s > d
2
. Then, by the Sobolev embeddings we have

(2.8) ‖uv‖Qs ≤ Cs
∑

|α|+|β|≤s

∑
γ≤α

‖xβ∂α−γu‖H|γ|‖∂γv‖Hs−|γ| .

On the other hand,

(2.9) ‖xβ∂α−γu‖H|γ| �
∑
|µ|≤|γ|

‖∂µ
(
xβ∂α−γu

)
‖L2 ≤ C ′s‖u‖Qs .

Similarly,

(2.10) ‖∂γv‖Hs−|γ| ≤ C ′′s ‖u‖Qs .
Combining (2.8), (2.9) and (2.10) we get the desired result.

As a technical tool, we will also use the scale of weighted Sobolev spaces

(2.11) Hs1,s2(Rd) = {u ∈ S ′(Rd) : ‖u‖Hs1,s2 := ‖〈x〉s2u‖s1 <∞},
defined for s1, s2 ∈ R. In particular, we need the following result (see e.g. [24,
Definition 3.1.1 and Theorem 3.1.5]).

Proposition 2.2. Consider a symbol p(x, ξ) satisfying the estimates

(2.12) |∂βx∂αξ p(x, ξ)| ≤ Cα,β〈x〉n−|β|〈ξ〉m−|α|, ∀α, β ∈ Nd, x ∈ Rd.

Then the corresponding operator p(x,D) is bounded Hs1,s2(Rd) → Hs1−m,s2−n(Rd)
for every s1, s2 ∈ R, with operator norm estimated by an upper bound of a finite
number of the constants Cα,β appearing in (2.12).

By using Schauder’s estimates in the standard Sobolev spaces and the inclusion
Hs1,s2(Rd) ↪→ Hs1(Rd), valid if s2 ≥ 0, one also gets

(2.13) ‖uv‖Hs1,s2 ≤ Cs1,s2‖u‖Hs1,s2‖v‖Hs1,s2 s1 >
d

2
, s2 ≥ 0.

A symbol p ∈ Γm(Rd) (and the corresponding operator) is said to be Γ-elliptic if
it satisfies the condition (1.12).

The notion of Γ-ellipticity for an operator in OPΓm(Rd) will be crucial in the
subsequent arguments because it guaranties the existence of a parametrix E ∈
OPΓ−m(Rd). Namely we have the following result, see [24, Theorem 1.3.6] for the
proof.

Proposition 2.3. Let p ∈ Γm(Rd) be Γ-elliptic. Then there exists an operator
E ∈ OPΓ−m(Rd) such that EP = I + R and PE = I + R′, where R,R′ are
globally regularizing pseudodifferential operators, i.e. R and R′ are continuous
maps S ′(Rd)→ S(Rd). The operator E is said to be a parametrix for P .
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Finally we point out for further reference the following formulae, which can be
verified by a direct computation: for α, β ∈ Nd, u ∈ S(Rd) :

(2.14) xβp(x,D)u =
∑
γ≤β

(−1)|γ|
(
β

γ

)
(Dγ

ξ p)(x,D)(xβ−γu),

(2.15) ∂αp(x,D)u =
∑
δ≤α

(
α

δ

)
(∂δxp)(x,D)∂α−δu.

3. A space of analytic functions

We introduce a space of real-analytic functions in Rd, which extend holomorphi-
cally on a sector in Cd and display there a Gaussian decay.

Definition 3.1. We denote by Hsect(Rd) the space of all functions f ∈ C∞(Rd)
satisfying the following condition: there exists a constant C > 0 such that

(3.1) |xβ∂αf(x)| ≤ C |α|+|β|+1M(α, β), for all α, β ∈ Nd,

where

(3.2) M(α, β) = |α|!1/2 max{|α|, |β|}!1/2.

It is easy to verify that the space Hsect(Rd) is closed under differentiation.

Theorem 3.2. Let f ∈ Hsect(Rd). Then f extends to a holomorphic function
f(x+ iy) in the sector

(3.3) Cε = {z = x+ iy ∈ Cd : |y| < ε(1 + |x|)}

of Cd for some ε > 0, satisfying there the estimates

(3.4) |f(x+ iy)| ≤ Ce−c|x|
2

,

for some constants C > 0, c > 0.

Proof. First we show the estimates

(3.5) |xβ∂αf(x)| ≤ C |α|+1|α|!e−c|x|2 , for |β| ≤ |α|.
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Indeed, since |x|2n ≤ kn
∑
|γ|=n |x2γ| for a constant k > 0 depending only on the

dimension d, by (3.1) we have (assuming C ≥ 1 in (3.1))

ec|x|
2|xβ∂αf(x)| =

∞∑
n=0

(c|x|2)n

n!
|xβ∂αf(x)|

≤
∞∑
n=0

(ck)n
∑
|γ|=n

1

|γ|!
|xβ+2γ∂αf(x)|

≤
∞∑
n=0

(ck)n
∑
|γ|=n

C2|α|+2|γ|+1 |α|!1/2(|α|+ 2|γ|)!1/2

|γ|!

≤
∞∑
n=0

(ck)n
∑
|γ|=n

(2C)2|α|+2|γ|+1|α|!,

where in the last step we used the inequality (|α|+ 2|γ|)! ≤ 2|α|+4|γ||α|!|γ|!2, which
follows by applying twice (2.1). Since the number of multi-indices γ satisfying
|γ| = n does not exceed 2d+n−1, we get (3.5) for a new constant C, if c is small
enough. Now, (3.5) and the estimate |α|! ≤ d|α|α! give

(3.6) |∂αf(x)| ≤ C |α|+1α!〈x〉−|α|e−c|x|2 ,
for a new constant C > 0. By considering the Taylor expansion of the function
f centered in any x ∈ Rd and using the estimates in (3.6) we obtain the desired
extension property in a sector of the type (3.3) together with the estimates (3.4).

In the sequel we will use the following characterization of the space Hsect(Rd) in
terms of Qs-based norms.

Set, for f ∈ S ′(Rd),

(3.7) Ss,ε∞ [f ] =
∑

α, β∈Nd

ε|α|+|β|

M(α, β)
‖xβ∂αf‖Qs ,

where M(α, β) is defined in (3.2).

Proposition 3.3. Let f ∈ Hsect(Rd). Then for every s ∈ N there exists ε > 0 such
that Ss,ε∞ [f ] <∞.

In the opposite direction, if for some s ∈ N there exists ε > 0 such that Ss,ε∞ [f ] <
∞, then f ∈ Hsect(Rd).

Proof. Assume f ∈ Hsect(Rd). We have

‖xβ∂αf‖Qs =
∑

|δ|+|γ|≤s

‖xδ∂γ
(
xβ∂αf

)
‖L2 .
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Now, if M ∈ N satisfies M > d/4 we have

(3.8) ‖xδ∂γ
(
xβ∂αf

)
‖L2 ≤ C ′‖(1 + |x|2)Mxδ∂γ

(
xβ∂αf

)
‖L∞ .

By Leibniz’ formula, (3.1) and (2.1) we get

‖xβ∂αf‖Qs ≤ C |α|+|β|+1
s M(α, β)

for some constant Cs > 0. Hence Ss,ε∞ [f ] <∞ if ε < C−1
s .

In the opposite direction, we may take s = 0; hence assume S0,ε
∞ [f ] < ∞ for

some ε > 0. Then ‖xβ∂αf(x)‖L2 ≤ C |α|+|β|+1M(α, β) for all α, β ∈ Nd. If M is an
integer, M > d/2, we have

‖xβ∂αf‖L∞ ≤ C
∑
|γ|≤M

‖∂γ
(
xβ∂αf

)
‖L2 ,

and similarly one gets that f ∈ Hsect(Rd).

4. Proof of the main result (Theorem 1.1)

In this section we prove Theorem 1.1. In fact we shall state and prove this result
for the more general non-homogeneous equation

(4.1) Pu = f + F [u],

where P and F [u] satisfy the assumptions of Theorem 1.1 and f is a function in the
space Hsect(Rd) defined in Section 3. Moreover we can restate our result in terms
of estimates in Hsect(Rd). Namely, in view of Theorem 3.2, it will be sufficient to
prove the following theorem.

Theorem 4.1. Let P = p(x,D) ∈ OPΓma (Rd),m > 0, be Γ-elliptic, that is (1.12) is
satisfied. Let F [u] be of the form (1.13) (possibly with some factors in the product
replaced by their conjugates) and f ∈ Hsect(Rd). Assume moreover that u ∈ Hs(Rd),
s > d/2 + maxk{|ρk|}, is a solution of (4.1). Then u ∈ Hsect(Rd).

In fact we always assume that F [u] has the form in (1.13), and we leave to the
reader the easy changes when some factors of the product in (1.13) are replaced by
their conjugates.

The first step is to show that, under the assumptions of Theorem 4.1, the sum
Ss,εN [u] is finite for every N ∈ N and for some ε > 0. In particular, we prove the
following preliminary result.

Lemma 4.2. Under the assumptions of Theorem 4.1, we have u ∈ S(Rd).

Proof. The proof is based on a bootstrap argument in the scale of weighted Sobolev
spaces defined in (2.11). Notice that Hs(Rd) = Hs,0(Rd) and that

⋂
s1,s2∈R

Hs1,s2(Rd)

= S(Rd). To prove the lemma it is then sufficient to show that if u ∈ Hs1,s2(Rd),
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s1 > d/2 + M, with M = maxk{|ρk|}, s2 ≥ 0, then u ∈ Hs1+τ,s2+τ , with τ =
min{m/2, 1/2}, and to iterate this argument. We first consider the case m ≥ 1.
Let E ∈ OPΓ−m(Rd) be a parametrix of P (Proposition 2.3). Applying E to both
sides of the equation (4.1), we get

u = −Ru+ Ef + EF [u],

where R is globally regularizing. In particular, we have Ru ∈ S(Rd) and Ef ∈
S(Rd) because f ∈ S(Rd). Concerning the nonlinear term, we observe that, since
−m ≤ −M − h− 1, then the symbol e(x, ξ) of E satisfies the following estimates

|∂αξ ∂βxe(x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)−M−h−1−|α|〈x〉−|β|

≤ Cαβ〈ξ〉−M−1/2−|α|〈x〉−h−1/2−|β|.

It follows from Proposition 2.2 that E : Hs1−M,s2−h(Rd)→ Hs1+1/2,s2+1/2(Rd) con-
tinuously for every s1, s2 ∈ R. In particular, in view of (1.14), we have

‖EF [u]‖Hs1+1/2,s2+1/2 = ‖E
∑

h,l,ρ1,...,ρl

Fh,l,ρ1...ρl(x)
l∏

k=1

∂ρku‖Hs1+1/2,s2+1/2

≤ C
∑

h,l,ρ1,...,ρl

‖Fh,l,ρ1...ρl(x)
l∏

k=1

∂ρku‖Hs1−M,s2−h

≤ C ′‖
l∏

k=1

∂ρku‖Hs1−M,s2 ≤ C ′′‖u‖lHs1,s2 <∞.

by Schauder’s estimates (2.13), because s1 −M > d/2. The case 0 < m < 1 is
completely similar, considering that in this case h = M = 0 and the symbol e(x, ξ)
of E satisfies the estimates

|∂αξ ∂βxe(x, ξ)| ≤ Cαβ〈ξ〉−m/2−|α|〈x〉−m/2−|β|,

so that E maps continuously Hs1,s2(Rd) into Hs1+m/2,s2+m/2(Rd).

In order to prove Theorem 4.1 it suffices to verify that Ss,ε∞ [u] < ∞ for some
s ≥ 0, ε > 0, in view of Proposition 3.3. This will be achieved by an iteration
argument involving the partial sums of the series in (3.7), that are

(4.2) Ss,εN [f ] =
∑

|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖xβ∂αf‖Qs ,

where M(α, β) is defined in (3.2).
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4.1. Proof of Theorem 4.1. We need several estimates to which we address now.

Proposition 4.3. Let R ∈ OPΓ−1(Rd). Then for every s ∈ R there exists a
constant Cs > 0 such that, for every ε > 0, N ≥ 1 and u ∈ S(Rd), we have∑

0<|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖R(xβ∂αu)‖Qs ≤ CsεS

s,ε
N−1[u].

Proof. We first estimate the terms with β = 0, hence α 6= 0. Let k ∈ {1, . . . , d}
such that αk 6= 0. Since R ◦ ∂k ∈ OPΓ0(Rd) is bounded on Qs(Rd) we have1

ε|α|

|α|!
‖R(∂αu)‖Qs ≤ Csε

ε|α|−1

|α|!
‖∂α−eku‖Qs .

On the other hand, when β 6= 0, hence βj 6= 0 for some j ∈ {1, . . . , d}, we use
the fact that R ◦ xj ∈ OPΓ0(Rd) is bounded on Qs(Rd). We get

ε|α|+|β|

M(α, β)
‖R(xβ∂αu)‖Qs ≤ Csε

ε|α|+|β|−1

M(α, β)
‖xβ−ej∂αu‖Qs .

Since M(α, β) ≥M(α, β − ej), this gives the desired result.

Proposition 4.4. Let P = p(x,D) be a pseudodifferential with symbol p(x, ξ)
satisfying the estimates (1.11), with m ≥ 0. Let E ∈ OPΓ−m(Rd). Then for every
s ∈ R there exists a constant Cs > 0 such that, for every ε small enough, N ≥ 1
and u ∈ S(Rd), we have

(4.3)
∑

0<|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖E[P, xβ∂α]u‖Qs ≤ CsεS

s,ε
N−1[u].

Proof. We estimate separately each term arising in the sum (4.3). We write

[P, xβ∂α] = [P, xβ]∂α + xβ[P, ∂α].

Hence, using (2.14), (2.15), we get

(4.4) [P, xβ∂α]u =
∑

06=γ0≤β

(−1)|γ0|+1

(
β

γ0

)
(Dγ0

ξ p)(x,D)(xβ−γ0∂αu)

−
∑

06=δ≤α

(
α

δ

)
xβ∂δxp(x,D)∂α−δu.

1We denote by ek the kth vector of the standard basis of Rd.
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Given β, δ, let δ̃ be a multi-index of maximal length among those satisfying |δ̃| ≤ |δ|
and δ̃ ≤ β (hence, if |δ̃| < |δ| then β − δ̃ = 0). Writing xβ = xδ̃xβ−δ̃ in the last
term of (4.4) and using again (2.14) we get
(4.5)

[P, xβ∂α]u =
∑
δ≤α

∑
γ0≤β−δ̃

(δ,γ0)6=(0,0)

(−1)|γ0|+1

(
β − δ̃
γ0

)(
α

δ

)
xδ̃(Dγ0

ξ ∂
δ
xp)(x,D)(xβ−δ̃−γ0∂α−δu).

We now work out this formula to obtain a useful representation of the commu-

tator [P, xβ∂α]. Namely, we look at the operator xβ−δ̃−γ0∂α−δ. Given γ0, α, δ, let
γ̃0 be a multi-index, to be chosen later on, satisfying |γ̃0| ≤ |γ0| and γ̃0 ≤ α − δ.
We write, by the inverse Leibniz formula (2.5),

(4.6) xβ−δ̃−γ0∂α−δ = xβ−δ̃−γ0∂γ̃0∂α−δ−γ̃0 = ∂γ̃0 ◦ xβ−δ̃−γ0∂α−δ−γ̃0

+
∑

06=γ1≤β−δ̃−γ0
γ1≤γ̃0

(−1)|γ1|(β − δ̃ − γ0)!

(β − δ̃ − γ0 − γ1)!

(
γ̃0

γ1

)
∂γ̃0−γ1 ◦ xβ−δ̃−γ0−γ1∂α−δ−γ̃0 .

We now look at the operator xβ−δ̃−γ0−γ1∂α−δ−γ̃0 . We denote by γ̃1 a multi-index,
to be chosen later on, satisfying |γ̃1| ≤ |γ1|, γ̃1 ≤ α − δ − γ̃0. Applying again the
inverse Leibniz formula we have

(4.7) xβ−δ̃−γ0−γ1∂α−δ−γ̃0 = xβ−δ̃−γ0−γ1∂γ̃1∂α−δ−γ̃0−γ̃1

= ∂γ̃1 ◦ xβ−δ̃−γ0−γ1∂α−δ−γ̃0−γ̃1

+
∑

0 6=γ2≤β−δ̃−γ0−γ1
γ2≤γ̃1

(−1)|γ2|(β − δ̃ − γ0 − γ1)!

(β − δ̃ − γ0 − γ1 − γ2)!

(
γ̃1

γ2

)
∂γ̃1−γ2 ◦ xβ−δ̃−γ0−γ1−γ2∂α−δ−γ̃0−γ̃1 .

Continuing in this way and substituting all in (4.5) we get

[P, xβ∂α]u =
∑
δ≤α

r∑
j=0

∑
γ0≤β−δ̃

(δ,γ0)6=(0,0)

∑
0 6=γ1≤β−δ̃−γ0

γ1≤γ̃0

· · ·
∑

0 6=γj≤β−δ̃−γ0−...−γj−1
γj≤γ̃j−1

Cα,β,δ,γ0,γ1,...,γj(4.8)

×pα,β,δ,γ0,γ1,...,γj(x,D)
(
xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju

)
,

where γ̃j satisfy |γ̃j| ≤ |γj| and γ̃j ≤ α− δ − γ̃0 − . . .− γ̃j−1,

(4.9) pα,β,δ,γ0,γ1,...,γj(x, ξ) = xδ̃
(
Dγ0
ξ ∂

δ
xp
)
(x, ξ)ξγ̃0−γ1+γ̃1−...−γj+γ̃j , j ≥ 0,
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and

|Cα,β,δ,γ0,γ1,...,γj | =
α!(β − δ̃)!

(α− δ)!δ!γ0!(β − δ̃ − γ0 − . . .− γj)!

j∏
k=1

(
γ̃k−1

γk

)

≤ |α|!|β − δ̃|!
|α− δ|!δ!γ0!|β − δ̃ − γ0 − . . .− γj|!

2|γ̃0+...+γ̃j−1|,(4.10)

cf. (2.4) and (2.1). (If j = 0 in (4.10) we mean that there are not the binomial
factors, nor the power of 2). Observe that, since we have γj 6= 0 for every j ≥ 1,
this procedure in fact stops after a finite number r of steps.

We now study separately the terms with |α| ≥ |β| and |β| > |α|.

Case |α| ≥ |β|.
We use the formula (4.8), where now we choose γ0 satisfying, in addition, |γ̃0| =
|γ0|. Such a multi-index exists, because |α| ≥ |β|. Similarly, at each subsequent
step we can choose γ̃j, j ≥ 1, satisfying in addition |γ̃j| = |γj|.

Now we observe that, by (1.11), (2.1), and Leibniz’ formula, for every θ, σ ∈ Nd

we have

(4.11) |∂θξ∂σxpα,β,δ,γ0,γ1,...,γj(x, ξ)| ≤ C |γ0|+|δ|+1γ0!δ!(1 + |x|+ |ξ|)m−|θ|〈x〉−|σ|,

for some constant C depending only on θ and σ. In fact, |δ̃| ≤ |δ|, |γ̃0 − γ1 +
γ̃1 − . . .− γj + γ̃j| = |γ̃0| = |γ0|, and the powers of |δ| and |γ0| which arise can be
estimated by C |γ0|+|δ|+1 for some C > 0.

We now use these last bounds to estimate E ◦ pα,β,δ,γ0,γ1,...,γj(x,D). To this

end, observe that this operator belongs to OPΓ0(Rd), and therefore its norm as a
bounded operator on Qs(Rd) is estimated by a seminorm of its symbol in Γ0(Rd),
depending only on s and d. Such a seminorm is in turn estimated by the product
of a seminorm of the symbol of E in Γ−m(Rd) and a seminorm of pα,β,δ,γ0,γ1,...,γj in

Γm(Rd), again depending only on s, d. Hence, from (4.11) we get

(4.12) ‖E ◦ pα,β,δ,γ0,γ1,...,γj(x,D)‖B(Qs) ≤ C |γ0|+|δ|+1
s γ0!δ!.

Since |γ̃k| = |γk|, 0 ≤ k ≤ j, we have

(4.13)
|β − δ̃|!|α− δ − γ̃0 − . . .− γ̃j|!
|α− δ|!|β − δ̃ − γ0 − . . .− γj|!

≤ 1,

(recall that if |δ̃| < |δ| then β − δ̃ = γ0 = . . . = γj = γ̃0 = . . . = γ̃j = 0).
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By (4.10), (4.12) (4.13), we get in this case

(4.14)

ε|α|+|β|

|α|!
|Cα,β,δ,γ0,γ1,...,γj |‖E ◦ pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)‖Qs

≤ Cs(Csε)
|δ|+|δ̃|+|γ0+...+γj |+|γ̃0+...+γ̃j | ε

|α|+|β|−|δ|−|δ̃|−|γ0+...+γj |−|γ̃0+...+γ̃j |

|α− δ − γ̃0 − . . .− γ̃j|!
× ‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖Qs .

Now, the assumption |α| ≥ |β| and the choice of δ̃ and γ̃j, j ≥ 0, imply M(α, β) =

|α|! and |β − δ̃ − γ0 − . . .− γj| ≤ |α− δ − γ̃0 − . . .− γ̃j|. Hence

M(α− δ − γ̃0 − . . .− γ̃j, β − δ̃ − γ0 − . . .− γj) = |α− δ − γ̃0 − . . .− γ̃j|!.
We can therefore rewrite (4.14) as

(4.15)

ε|α|+|β|

M(α, β)
|Cα,β,δ,γ0,γ1,...,γj |‖E ◦pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)‖Qs

≤ Cs(Csε)
|δ|+|δ̃|+|γ0+...+γj |+|γ̃0+...+γ̃j |×

× ε|α|+|β|−|δ|−|δ̃|−|γ0+...+γj |−|γ̃0+...+γ̃j |

M(α− δ − γ̃0 − . . .− γ̃j, β − δ̃ − γ0 − . . .− γj)
‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖Qs .

We now perform the change of variables α̃ = α− δ − γ̃0 − . . .− γ̃j, β̃ = β − δ̃ −
γ0 − . . . − γj. In fact, the map (α, β, δ, j, γ0, γ1, . . . , γj) → (α̃, β̃, δ, j, γ0, γ1, . . . , γj)

defined in this way is not injective, because of the presence of δ̃, γ̃0, . . . , γ̃j (of

course, one should think of δ̃ as a function of α, β, δ, and to every γ̃j, j ≥ 0, as a

function of α, β, δ, γk, k ≤ j). Anyhow, since |δ̃| ≤ |δ| and |γ̃j| = |γj|, the number
of pre-images of a given point is at most 2|δ|+|γ0|+...+|γj |+d(j+2). Hence we deduce
from (4.8) and (4.15) that, if ε is small enough,

(4.16)
∑

|α|+|β|≤N
|α|≥|β|

ε|α|+|β|

M(α, β)
‖E[P, xβ∂α]u‖Qs ≤

2dCs
∑

|α̃|+|β̃|≤N−1

ε|α̃|+|β̃|

M(α̃, β̃)
‖xβ̃∂α̃u‖Qs

r∑
j=0

2d(j+1)
∑
δ

∑
γ1 6=0,...,γj 6=0

γ0: (δ,γ0)6=(0,0)

(2Csε)
|δ|+|γ0+γ1+...+γj |

≤ Ss,εN−1[u]
r∑
j=0

(C ′sε)
j+1 ≤ C ′′s εS

s,ε
N−1[u].
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Case |β| > |α|. Here it is convenient to get separate estimates when |x| is large
or small at the scale |β|1/2. To make this precise, consider a function ϕ ∈ C∞0 (Rd),
ϕ(x) = 1 for |x| ≤ 1 and ϕ(x) = 0 for |x| ≥ 2. Let then

ϕβ(x) = ϕ
( x

|β|1/2
)
,

(notice that β 6= 0, because of our hypothesis |β| > |α|). Hence ϕβ(x) = 1 for
|x| ≤ |β|1/2 and ϕβ(x) = 0 for |x| ≥ 2|β|1/2. Moreover, we have

(4.17) |∂γϕβ(x)| ≤ Cγ|β|−|γ|/2, γ ∈ Nd, x ∈ Rd.

for constants Cγ > 0.
We write

[P, xβ∂α] = ϕβ(x)[P, xβ∂α] + (1− ϕβ(x))[P, xβ∂α],

and we split consequently the terms in (4.3).

Estimate of
ε|α|+|β|

M(α, β)
‖E
(
(1− ϕβ(x))[P, xβ∂α]u

)
‖Qs .

We use the expression in (4.5) for [P, xβ∂α], and we split the second sum, by

considering separately the terms with |β− δ̃−γ0| ≤ |α−δ| or |β− δ̃−γ0| > |α−δ|.
This is equivalent to saying |β−γ0| ≤ |α| or |β−γ0| > |α| because |β| > |α| implies

|δ̃| = |δ|. Moreover we apply the iterative argument at the beginning of the present
proof to the terms with |β − γ0| ≤ |α|. We obtain

(4.18)
ε|α|+|β|

M(α, β)
‖E
(
(1− ϕβ(x))[P, xβ∂α]u

)
‖Qs ≤ (I) + (II)

where

(4.19) (I) =
∑
δ≤α

∑
γ0≤β−δ̃:

(δ,γ0)6=(0,0), |β−γ0|>|α|

ε|α|+|β|

M(α, β)

(
β − δ̃
γ0

)(
α

δ

)

× ‖E
(
xδ̃(1− ϕβ(x))(Dγ0

ξ ∂
δ
xp)(x,D)(xβ−δ̃−γ0∂α−δu)

)
‖Qs ,

whereas

(4.20)

(II) =
∑
δ≤α

r∑
j=0

∑
γ0≤β−δ̃:

(δ,γ0)6=(0,0), |β−γ0|≤|α|

∑
0 6=γ1≤β−δ̃−γ0

γ1≤γ̃0

· · ·
∑

0 6=γj≤β−δ̃−γ0−...−γj−1
γj≤γ̃j−1

ε|α|+|β|

M(α, β)
×

|Cα,β,δ,γ0,γ1,...,γj |‖E
(
(1−ϕβ(x))pα,β,δ,γ0,γ1,...,γj(x,D)

(
xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju

))
‖Qs ,
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where the multi-indices γ̃j will be chosen later on, satisfying |γ̃j| ≤ |γj| and γ̃j ≤
α− δ− γ̃0− . . .− γ̃j−1; the constants Cα,β,δ,γ0,γ1,...,γj satisfy (4.10), and (4.9) holds.

Estimate of the terms in (I) (hence |β − γ0| > |α|)
Since |δ̃| = |δ|, by Leibniz’ formula, (1.11) and (2.1), for every θ, σ ∈ Nd we have

(4.21) |∂θξ∂σx (xδ̃(Dγ0
ξ ∂

δ
xp)(x, ξ))| ≤ C |γ0|+|δ|+1γ0!δ!(1 + |x|+ |ξ|)m−|γ0|−|θ|〈x〉−|σ|

for some constant C depending only on θ and σ.
Since 1−ϕβ(x) is supported where |x| ≥ |β|1/2, using Leibniz’ formula again and

(4.17) we get

∣∣∣∂θξ∂σx (xδ̃(1− ϕβ(x))(Dγ0
ξ ∂

δ
xp)(x, ξ))

∣∣∣ ≤
C |γ0|+|δ|+1γ0!δ!|β|−

|γ0|
2 (1 + |x|+ |ξ|)m−|θ|〈x〉−|σ|

for some constant C depending only on θ and σ. As a consequence,

(4.22) ‖E ◦ (xδ̃(1− ϕβ(x))(Dγ0
ξ ∂

δ
xp)(x,D))‖B(Qs) ≤ C |γ0|+|δ|+1

s γ0!δ!|β|−
|γ0|
2 .

On the other hand, we have

(4.23)

(
β − δ̃
γ0

)(
α

δ

)
≤ |β − δ̃|!|α|!
|β − δ̃ − γ0|!|α− δ|!γ0!δ!

as well as

(4.24)
1

|β|!1/2|α|!1/2
|β − δ̃|!|α|!

|β − δ̃ − γ0|!|α− δ|!
|β − δ̃ − γ0|!1/2|α− δ|!1/2|β|−|γ0|/2

=
( |β − δ̃|!|α|!
|α− δ|!|β|!

)1/2

︸ ︷︷ ︸
≤1

( |β − δ̃|!
|β − δ̃ − γ0|!

|β|−|γ0|
)1/2

︸ ︷︷ ︸
≤1

≤ 1.

By (4.22), (4.23) and (4.24) we obtain

(4.25)
ε|α|+|β|

|α|!1/2|β|!1/2

(
β − δ̃
γ0

)(
α

δ

)
‖E
(
xδ̃(1− ϕβ(x))(Dγ0

ξ ∂
δ
xp)(x,D)u

)
‖Qs

≤ Cs(Csε)
2|δ|+|γ0| ε|α|+|β|−2|δ|−|γ0|

|α− δ|!1/2|β − δ̃ − γ0|!1/2
‖xβ−δ̃−γ0∂α−δu‖Qs .

Since |β| > |α| and |β − γ0| > |α|, then we have M(α, β) = |α|!1/2|β|!1/2 and

M(α− δ, β − δ̃ − γ0)|α− δ|!1/2|β − δ̃ − γ0|!1/2, so that (4.25) can be rephrased as
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(4.26)
ε|α|+|β|

M(α, β)

(
β − δ̃
γ0

)(
α

δ

)
‖E(xδ̃(1− ϕβ(x))(Dγ0

ξ ∂
δ
xp)(x,D)u)‖Qs

≤ Cs(Csε)
2|δ|+|γ0| ε|α|+|β|−2|δ|−|γ0|

M(α− δ, β − δ̃ − γ0)
‖xβ−δ̃−γ0∂α−δu‖Qs .

Estimate of the terms in (II) (hence |β − γ0| ≤ |α|).

In the iterative argument which led to (4.20), we choose the multi-indices γ̃j, j ≥ 0,

in the following way: γ̃0 is a multi-index satisfying, in addition, |β − δ̃ − γ0| =

|α − δ − γ̃0|. Such a multi-index exists, because |δ̃| = |δ|, |β| > |α| and |β −
γ0| ≤ |α|; moreover |γ0| − |γ̃0| = |β| − |α|. Similarly, we can choose γ̃1 satisfying

|β − δ̃ − γ0 − γ1| = |α − δ − γ̃0 − γ̃1|; in particular |γ̃1| = |γ1|. In general we can
choose γ̃j such that

(4.27) |β − δ̃ − γ0 − . . .− γj| = |α− δ − γ̃0 − . . .− γ̃j|;
hence |γ̃j| = |γj| if j ≥ 1.

Notice that now in (4.9) we have |δ̃| = |δ| and |γ̃0−γ1 + γ̃1− . . .−γj + γ̃j| = |γ̃0|.
Hence, since |γ0| − |γ̃0| = |β| − |α|, by (1.11), (2.1), and Leibniz’ formula, for every
θ, σ ∈ Nd we have

(4.28) |∂θξ∂σxpα,β,δ,γ0,γ1,...,γj(x, ξ)| ≤ C |γ0|+|δ|+1γ0!δ!(1 + |x|+ |ξ|)m−|β|+|α|−|θ|〈x〉−|σ|,
for some constant C depending only on θ and σ.

Since 1−ϕβ(x) is supported where |x| ≥ |β|1/2, using Leibniz’ formula again and
(4.17) we get

|∂θξ∂σx ((1− ϕβ(x))pα,β,δ,γ0,γ1,...,γj(x, ξ))| ≤ C |γ0|+|δ|+1|β|−
|β|−|α|

2 γ0!δ!

× (1 + |x|+ |ξ|)m−|θ|〈x〉−|σ|

for some new constant C depending only on θ and σ. We obtain

(4.29) ‖E ◦ ((1− ϕβ(x))pα,β,δ,γ0,γ1,...,γj(x,D))‖B(Qs) ≤ C |γ0|+|δ|+1
s γ0!δ!|β|−

|β|−|α|
2 .

Moreover we have
(4.30)

1

|α|!1/2|β|!1/2
|α|!|β − δ̃|!
|α− δ|!

|β|−
|β|−|α|

2 =
( |α|!|β − δ̃|!
|α− δ|!|β|!

)1/2

︸ ︷︷ ︸
≤1

( |β − δ̃|!
|α− δ|!

|β|−|β|+|α|
)1/2

︸ ︷︷ ︸
≤1

≤ 1.

By (4.10), (4.29), (4.30), we get
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(4.31)
ε|α|+|β|

|α|!1/2|β|!1/2
|Cα,β,δ,γ0,γ1,...,γj |

× ‖E
(
(1− ϕβ(x))pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)

)
‖Qs

≤ Cs(Csε)
|δ|+|δ̃|+|γ0+...+γj |+|γ̃0+...+γ̃j | ε

|α|+|β|−|δ|−|δ̃|−|γ0+...+γj |−|γ̃0+...+γ̃j |

|β − δ̃ − γ0 − . . .− γj|!
× ‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖Qs .

Since |β| > |α|, we have M(α, β) = |α|!1/2|β|!1/2, whereas from (4.27) we see that

M(α− δ− γ̃0 − . . .− γ̃j, β − δ̃− γ0 − . . .− γj) = |β − δ̃− γ0 − . . .− γj|!. Hence we
deduce from (4.31) that

(4.32)
ε|α|+|β|

M(α, β)
|Cα,β,δ,γ0,γ1,...,γj |

× ‖E
(
(1− ϕβ(x))pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)

)
‖Qs

≤ Cs(Csε)
|δ|+|δ̃|+|γ0+...+γj |+|γ̃0+...+γ̃j | ε|α|+|β|−|δ|−|δ̃|−|γ0+...+γj |−|γ̃0+...+γ̃j |

M(α− δ − γ̃0 − . . .− γ̃j, β − δ̃ − γ0 − . . .− γj)
× ‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖Qs .

We now use (4.18), (4.19), (4.20) (4.26), (4.32) to conclude, by the same argu-
ments as in the case |α| ≥ |β|, that

(4.33)
∑

|α|+|β|≤N
|β|>|α|

ε|α|+|β|

M(α, β)
‖E
(
(1− ϕβ(x))[P, xβ∂α]u

)
‖Qs ≤ C ′sεS

s,ε
N−1[u].

Estimate of
ε|α|+|β|

M(α, β)
‖E
(
ϕβ(x)[P, xβ∂α]u

)
‖Qs .

We now start from the formula (4.4). For any fixed α, β, δ, we choose δ̃ ≤ β

such that |β − δ̃| = |α − δ|, which is possible because here |β| > |α|. Writing

xβ = xδ̃xβ−δ̃ in (4.4) and using (2.14) we still get the formula (4.5) (notice however

the choice of δ̃ is different from the one we made there). We now apply the iterative
argument detailed at the beginning of the present proof, which led to (4.8), where
the coefficients Cα,β,δ,γ0,γ1,...,γj satisfy (4.10) and (4.9) holds. The multi-indices γ̃j,
j ≥ 0, are chosen here to satisfy, in addition, |γ̃j| = |γj|, which is possible because
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|β − δ̃| = |α− δ|. Hence, we can rewrite (4.10) as

(4.34) |Cα,β,δ,γ0,γ1,...,γj | ≤
|α|!

δ!γ0!|β − δ̃ − γ0 − . . .− γj|!
2|γ̃0+...+γ̃j−1|.

Now, on the support of ϕβ we have |x| ≤ 2|β|1/2; moreover we have |δ̃| = |β| −
|α|+ |δ|. Hence it follows from (1.11) and (4.9) that

|∂θξ∂σx
(
ϕβ(x)pα,β,δ,γ0,γ1,...,γj(x, ξ)

)
| ≤ C |γ0|+|δ̃|+1γ0!δ!|β|

|β|−|α|
2 (1 + |x|+ |ξ|)m−|θ|〈x〉−|σ|

for some constant C depending on σ, θ. As a consequence,

(4.35) ‖E ◦ (ϕβ(x)pα,β,δ,γ0,γ1,...,γj(x,D))‖B(Qs) ≤ C |γ0|+|δ̃|+1
s γ0!δ!|β|

|β|−|α|
2 .

Now we see from Stirling’s formula that, for some C > 1,

(4.36)
|α|!1/2|β|

|β|−|α|
2

|β|!1/2
≤ C |β|−|α| ≤ C |δ̃|.

By applying (4.34), (4.35) and (4.36) we obtain

(4.37)
ε|α|+|β|

|α|!1/2|β|!1/2
|Cα,β,δ,γ0,γ1,...,γj |

× ‖E
(
ϕβ(x)pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)

)
‖Qs

≤ Cs(Csε)
|δ|+|δ̃|+|γ0+...+γj |+|γ̃0+...+γ̃j | ε

|α|+|β|−|δ|−|δ̃|−|γ0+...+γj |−|γ̃0+...+γ̃j |

|β − δ̃ − γ0 − . . .− γj|!
× ‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖Qs .

Since |β| > |α| we have M(α, β) = |α|!1/2|β|!1/2, whereas our choice of δ̃ and γ̃j
implies that |α − δ − γ̃0 − . . . − γ̃j| = |β − δ̃ − γ0 − . . . − γj|. Then we have

M(α− δ− γ̃0− . . .− γ̃j, β− δ̃− γ0− . . .− γj) = |β− δ̃− γ0− . . .− γj|! and we can
rewrite (4.37) as

(4.38)
ε|α|+|β|

M(α, β)
|Cα,β,δ,γ0,γ1,...,γj |

× ‖E
(
ϕβ(x)pα,β,δ,γ0,γ1,...,γj(x,D)(xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju)

)
‖Qs

≤ Cs(Csε)
|δ|+|δ̃|+|γ0+...+γj |+|γ̃0+...+γ̃j | ε|α|+|β|−|δ|−|δ̃|−|γ0+...+γj |−|γ̃0+...+γ̃j |

M(α− δ − γ̃0 − . . .− γ̃j, β − δ̃ − γ0 − . . .− γj)
× ‖xβ−δ̃−γ0−...−γj∂α−δ−γ̃0−...−γ̃ju‖Qs .
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It follows from (4.8) and (4.38), by the same arguments2 as in the case |α| ≥ |β|,
that

(4.39)
∑

|α|+|β|≤N
|β|>|α|

ε|α|+|β|

M(α, β)
‖E
(
ϕβ(x)[P, xβ∂α]u

)
‖Qs ≤ C ′sεS

s,ε
N−1[u].

This estimate, together with (4.16) and (4.33), implies (4.3), which concludes the
proof.

We now turn the attention to the nonlinear term. We first treat the case when
m ≥ 1.

Proposition 4.5. Let E ∈ OPΓ−m(Rd), m ≥ 1, h ∈ N, ρ1, . . . , ρl ∈ Nd, with
h + max{|ρk|} ≤ m − 1. Let g be a real-analytic function on Rd satisfying the
estimates

(4.40) |∂αg(x)| ≤ C |α|+1α!〈x〉h−|α|, x ∈ Rd, α ∈ Nd

for some C > 0 independent on α. Then for every integer s > d/2 + maxk{|ρk|}
there exists a constant Cs > 0 such that, for every ε small enough, N ≥ 1 and
u ∈ S(Rd), the following estimates hold:

(4.41)
∑

0<|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖E
(
xβ∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs ≤ Csε(S

s,ε
N−1[u])l.

Proof. We first treat the terms with β 6= 0 in the sum (4.41). Let j ∈ {1, . . . , d}
such that βj 6= 0. By Leibniz’ formula, we have

xβ∂α
(
g(x)

l∏
k=1

∂ρku
)

= xj
∑

δ0≤α−ej

∑
δ1+...+δl=α−δ0

α!

δ0!δ1! . . . δl!
∂δ0g(x)xβ−ej

l∏
k=1

∂δk+ρku.

Let now δ̃0 be a multi-index of maximal length among those satisfying |δ̃0| ≤
|δ0| and δ̃0 ≤ β − ej. Write xβ−ej = xδ̃0xβ−ej−δ̃0 and observe that the symbol

xjx
δ̃0∂δ0g(x) belongs to Γh+1(Rd), with every seminorm estimated by A|δ0|+1δ0!

for some positive constant A independent of δ0. Then E ◦ xjxδ̃0∂δ0g(x) belongs
to OPΓ−m+1+h(Rd). Consequently, it is continuous Qs−M(Rd) → Qs(Rd), with
M = max{|ρk|}, since −m + 1 + h ≤ −M and its operator norm is bounded by

2To be precise, here we do not have longer |δ̃| ≤ |δ|, but rather |δ̃| = |β| − |α| + |δ|, so that
the number of multi-indices δ̃ which may arise is estimated by 2|β|−|α|+|δ|+d−1, and this factor is
absorbed by the power ε|δ̃| = ε|β|−|α|+|δ| in (4.38).
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A|δ0|+1δ0! for a new constant A independent of δ0. Then we have

ε|α|+|β|

M(α, β)
‖E
(
xβ∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs

≤ Cs
∑
δ0≤α

A|δ0|+1
∑

δ1+...+δl=α−δ0

ε|α|+|β|

M(α, β)

α!

δ1! . . . δl!
‖xβ−ej−δ̃0

l∏
k=1

∂δk+ρku‖Qs−M .

We can now write

xβ−ej−δ̃0
l∏

k=1

∂δk+ρku =
l∏

k=1

xγk∂δk+ρku,

where γ1+. . .+γl = β−ej−δ̃0 and, if |β| ≤ |α|, with |γk| ≤ |δk| for 1 ≤ k ≤ l (which

is possible because in that case |β − ej − δ̃0| ≤ |α − δ0|; observe that if |δ̃0| < |δ0|
then β−ej− δ̃0 = 0), whereas, if |β| ≥ |α|+1, with |γk| ≥ |δk| for 1 ≤ k ≤ l (which

is possible because in that case |δ̃0| = |δ0| and |β − ej − δ̃0| ≥ |α− δ0|). Moreover,
if |β| ≤ |α|, (then M(α, β) = |α|!), we have by (2.3) the following inequality

(4.42)
1

|α|!
· α!

δ1! . . . δl!
≤ 1

|δ1|! . . . |δl|!
,

whereas, for |β| ≥ |α|+ 1, (then M(α, β) = |α|!1/2|β|!1/2), we have

(4.43)
1

|α|!1/2|β|!1/2
· α!

δ1! . . . δl!
≤ 1

(|δ1|! . . . |δl|!|γ1|! . . . |γl|!)1/2
,

which also follows at once from (2.3). Hence by Proposition 2.1 we get

(4.44)
ε|α|+|β|

M(α, β)
‖E
(
xβ∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs

≤ Csε
∑
δ0≤α

(Aε)|δ0|ε|δ̃0|
∑

δ1+...+δl=α−δ0

l∏
k=1

ε|γk|+|δk|

M(γk, δk)
‖xγk∂δk+ρku‖Qs−M .

Let now T ∈ OPΓ−M(Rd) be any operator which gives an isomorphismQs−M → Qs,
and write xγk∂δk+ρku = ∂ρk

(
xγk∂δku

)
+ [xγk∂δk , ∂ρk ]u in the last term of (4.44). We

get

‖xγk∂δk+ρku‖Qs−M ≤ ‖xγk∂δku‖Qs + ‖T [xγk∂δk , ∂ρk ]u‖Qs ,

where we used the fact that ∂ρk is bounded Qs(Rd)→ Qs−M(Rd).
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Using this last estimate we obtain

ε|α|+|β|

M(α, β)
‖E
(
xβ∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs ≤ Csε

∑
δ0≤α

(Aε)|δ0|
∑

δ̃0≤β−ej

ε|δ̃0|

×
∑

δ1+...+δl=α−δ0

l∏
k=1

ε|γk|+|δk|

M(γk, δk)

{
‖xγk∂δku‖Qs +

∑
|γ|≤m−1

‖T [xγk∂δk , ∂γ]u‖Qs
}
,

(recall that the γk’s depend on α, β, δ̃0, δ1, . . . , δl and the choice of ej). We now
sum the above expression over |α| + |β| ≤ N , α 6= 0. When α and β vary but δ

and δ̃0 are fixed, every term in the above sum also appears in the development of

{ ∑
|α̃|+|β̃|≤N−1

ε|α̃|+|β̃|

M(α̃, β̃)

{
‖xβ̃∂α̃u‖Qs +

∑
|γ|≤m−1

‖T [xβ̃∂α̃, ∂γ]u‖Qs
}}l

.

and is repeated at most d times (corresponding to the possibile choices of ej).
Hence, taking ε sufficiently small, we obtain

∑
0<|α|+|β|≤N

β 6=0

ε|α|+|β|

M(α, β)
‖E
(
xβ∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs

≤ C ′′s ε
{ ∑
|α̃|+|β̃|≤N−1

ε|α̃|+|β̃|

M(α̃, β̃)

{
‖xβ̃∂α̃u‖Qs +

∑
|γ|≤m−1

‖T [xβ̃∂α̃, ∂γ]u‖Qs
}}l

≤ C ′′s ε
{
Ss,εN−1[u] + C ′′′s εS

s,ε
N−2[u]

}l ≤ C ′′′′s ε(S
s,ε
N−1[u])l,

where we used Proposition 4.4 applied with ∂γ and T in place of P and E respec-
tively, and we understand Ss,ε−1[u] = 0.

We now treat the terms with β = 0 in the sum (4.41) (recall, M(α, 0) = |α|!).
Let α 6= 0 and j ∈ {1, . . . , d} such that αj 6= 0. By writing ∂α = ∂j∂

α−ej and using
Leibniz’ formula we have

∂α
(
g(x)

l∏
k=1

∂ρku
)

= ∂j
∑

δ0≤α−ej

∑
δ1+...+δl=α−ej−δ0

(α− ej)!
δ0!δ1! . . . δl!

∂δ0g(x)
l∏

k=1

∂δk+ρku.

Observe that E∂j ◦ ∂δ0g(x) ∈ OPΓ−m+1+h(Rd) is bounded Qs−M(Rd) → Qs(Rd),
with M = max{|ρk|}, because −m + 1 + h ≤ −M , and its operator norm is
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estimated by A|δ0|+1δ0! for some positive constant A independent of δ0. Hence

ε|α|

|α|!
‖E∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs

≤ Cs
∑

δ0≤α−ej

A|δ0|+1
∑

δ1+...+δl=α−ej−δ0

ε|α|

|α|!
(α− ej)!
δ1! . . . δl!

‖
l∏

k=1

∂δk+ρku‖Qs−M .

Using the inequality

1

|α|!
· (α− ej)!
δ1! . . . δl!

≤ 1

|δ1|! . . . |δl|!
,

Proposition 2.1 and the boundedness of ∂ρk : Qs → Qs−M we get

ε|α|

|α|!
‖E∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs ≤ Csε

∑
δ0≤α−ej

(Aε)|δ0|
∑

δ1+...+δl=α−ej−δ0

l∏
k=1

ε|δk|

|δk|!
‖∂δku‖Qs .

By the same arguments as above we obtain∑
0<|α|≤N

ε|α|

|α|!
‖E
(
xβ∂α

(
g(x)

l∏
k=1

∂ρku
))
‖Qs ≤ Csε(S

s,ε
N−1[u])l,

which concludes the proof.

We are now ready to conclude the proof of Theorem 4.1.

End of the proof of Theorem 4.1 (the case m ≥ 1). From (4.1) we have, for
α, β ∈ Nd, ε > 0,

ε|α|+|β|

M(α, β)
xβ∂αPu =

ε|α|+|β|

M(α, β)
xβ∂αf +

ε|α|+|β|

M(α, β)
xβ∂αF [u],

so that

ε|α|+|β|

M(α, β)
P (xβ∂αu) =

ε|α|+|β|

M(α, β)
[P, xβ∂α]u+

ε|α|+|β|

M(α, β)
xβ∂αf +

ε|α|+|β|

M(α, β)
xβ∂αF [u].

We now apply to both sides the parametrix E of P . WithR = EP−I ∈ OPΓ−1(Rd)
we obtain

ε|α|+|β|

M(α, β)
xβ∂αu = − ε|α|+|β|

M(α, β)
R(xβ∂αu) +

ε|α|+|β|

M(α, β)
E[P, xβ∂α]u

+
ε|α|+|β|

M(α, β)
E(xβ∂αf) +

ε|α|+|β|

M(α, β)
E(xβ∂αF [u]).
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Taking the Qs norms and summing over |α|+ |β| ≤ N give

Ss,εN [u] ≤ ‖u‖Qs +
∑

0<|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖R(xβ∂αu)‖Qs(4.45)

+
∑

0<|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖E[P, xβ∂α]u‖Qs

+
∑

0<|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖E(xβ∂αf)‖Qs

+
∑

0<|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖E(xβ∂αF [u])‖Qs .

The second and the third term in the right-hand side of (4.45) can be estimated
using Propositions 4.3 and 4.4 while the term containing f is obviously dominated
by Ss,ε∞ [f ]. For the last term we can apply Proposition 4.5. Hence, we have that,
for ε small enough,

Ss,εN [u] ≤ ‖u‖Qs + CsS
s,ε
∞ [f ] + Csε

(
Ss,εN−1[u] +

∑
l

(Ss,εN−1[u])l
)
.

Iterating the last estimate and possibly shrinking ε, we obtain that Ss,ε∞ [u] < ∞,
which implies u ∈ Hsect(Rd) by Proposition 3.3.

�

4.2. Proof of Theorem 4.1: the case 0 < m < 1. In this case the nonlinearity
(1.13), due to the restriction h+max{|ρk|} ≤ max{m−1, 0} reduces to the following
form

(4.46) F [u] =
∑
l

Fl(x)ul,

the above sum being finite, with l ∈ N, l ≥ 2, and Fl(x) real-analytic functions
satisfying the following estimates

(4.47) |∂αFl(x)| ≤ C |α|+1α!〈x〉−|α|, x ∈ Rd, α ∈ Nd,

for some C > 0 independent of α.
We follow the same argument used for the case m ≥ 1, so that we only sketch the

proof. For technical reasons which will be clear in the sequel, here it is convenient
to work in the framework of the usual Sobolev spaces, i.e. by defining
(4.48)

S̃s,εN [f ] =
∑

|α|+|β|≤N

ε|α|+|β|

M(α, β)
‖xβ∂αf‖Hs , S̃s,ε∞ [f ] =

∑
α, β∈Nd

ε|α|+|β|

M(α, β)
‖xβ∂αf‖Hs .
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It is easy to see that the results in Propositions 3.3, 4.3 and 4.4 continue to hold

with Ss,εN [u] and Ss,ε∞ [u] replaced by S̃s,εN [u] and S̃s,ε∞ [u] and with the spaces Qs

replaced by Hs everywhere (operators in OPΓ0(Rd) are bounded on every Hs by
Proposition 2.2 with m = n = 0). It remains to estimate the nonlinear term. On
this point we observe that although this term is more elementary than before, the
action of the parametrix gives a lower “gain”, since 0 < m < 1. Then we have to
modify slightly our technique. We have the following result.

Proposition 4.6. Let E ∈ OPΓ−m(Rd), 0 < m < 1, and let l ∈ N, l ≥ 2 and g
be a real-analytic function on Rd satisfying the same estimates as in (4.47). Then,
for every integer s > d/2 there exists a constant C ′s > 0 and, for every τ > 0, there
exists Cτ > 0 such that, for every ε small enough, N ≥ 1 and u ∈ S(Rd) we have

(4.49)
∑

0<|α+β|≤N

ε|α|+|β|

M(α, β)
‖E(xβ∂α(g(x)ul))‖Hs ≤ τC ′s‖u‖l−1

Hs S
s,ε
N [u]

+ C ′s(εCτ + τ + ε)(Ss,εN−1[u])l.

Proof. We first consider the terms with β 6= 0. We can write

xβ∂α(g(x)ul) = g(x)xβ∂αul +
∑

δ0+δ1+...+δk=α
δ0 6=0

α!

δ0!δ1! · · · δl!
∂δ0g(x)xβ

l∏
k=1

∂δku.

Let δ̃0 be a multi-index of maximal length among those satisfying |δ̃0| ≤ |δ0|.
δ̃0 ≤ β. The operators E ◦ g(x) and E ◦ xδ̃0∂δ0g(x) belong to OPΓ−m(Rd), and
the symbol of the second one has each seminorm estimated by A|δ0|+1δ0!, for some
positive constant A independent on δ0. Hence, by the continuity properties on
weighted Sobolev spaces (Proposition 2.2 with n = 0) we have

‖E(xβ∂α(g(x)ul)‖Hs ≤ Cs‖〈x〉−mxjxβ−ej∂α(ul)‖Hs

+
∑

δ0+δ1+...+δk=α
δ0 6=0

C |δ0|+1
s

α!

δ1! · · · δl!
‖xβ−δ̃0

l∏
k=1

∂δku‖Hs .

Now, since βj 6= 0 for some j ∈ {1, . . . , d}, we have

‖〈x〉−mxjxβ−ej∂α(ul)‖Hs =
∑
|γ|≤s

‖∂γ(〈x〉−mxjxβ−ej∂α(ul))‖L2

≤
∑
|γ|≤s

‖〈x〉−mxj∂γ(xβ−ej∂α(ul))‖L2

+
∑
|γ|≤s

∑
0 6=γ′≤γ

(
γ

γ′

)
‖∂γ′(〈x〉−mxj)∂γ−γ

′
(xβ−ej∂α(ul))‖L2 .
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Now, for every τ > 0 there exists C ′τ > 0 such that

(4.50) 〈x〉−m|xj| ≤ τ |xj|+ C ′τ .

Using this inequality and commuting xj with ∂γ we get∑
|γ|≤s

‖〈x〉−mxj∂γ(xβ∂α(ul))‖L2 ≤ τ
∑
|γ|≤s

‖xj∂γ(xβ−ej∂αul)‖L2 + Cs,τ‖xβ−ej∂α(ul)‖Hs

≤ τCs‖xβ∂α(ul)‖Hs + C ′s,τ‖xβ−ej∂α(ul)‖Hs .

We notice moreover that for γ′ 6= 0 we have ∂γ
′
(〈x〉−mxj) ∈ L∞(Rd), so that∑

|γ|≤s

∑
0 6=γ′≤γ

(
γ

γ′

)
‖∂γ′(〈x〉−mxj)∂γ−γ

′
(xβ−ej∂αul)‖L2 ≤ Cs‖xβ−ej∂αul‖Hs .

Hence we have obtained that

‖E(xβ∂α(g(x)ul)‖Hs ≤ τCs‖xβ∂α(ul)‖Hs + C ′s,τ‖xβ−ej∂α(ul)‖Hs(4.51)

+
∑

δ0+δ1+...+δk=α
δ0 6=0

C |δ0|+1
s

α!

δ1! · · · δl!
‖xβ−δ̃0

l∏
k=1

∂δku‖Hs .

Let us estimate the three terms in the right-hand side of (4.51). To treat the first
one we observe that

xβ∂α(ul) = lul−1xβ∂αu+
∑

δ1+...+δl=α
δk 6=α ∀k

α!

δ1! . . . δl!

l∏
k=1

xγk∂δku,

where, as before, we can choose γ1, . . . , γl ∈ Nd such that γ1 + . . . + γl = β and
|γj| ≤ |δj| (respectively (|γj| ≥ |δj|) if |β| ≤ |α| (respectively if |β| ≥ |α|). Then,
using the same arguments as in the case m ≥ 1, we obtain

(4.52) τCs
∑
|α+β|≤N
β 6=0

ε|α+β|

M(α, β)
‖xβ∂α(ul)‖Hs ≤ τ lCs‖u‖l−1

Hs S̃
s,ε
N [u] + τCs(S̃

s,ε
N−1[u])l.

Similarly, we easily prove that

(4.53)
∑
|α+β|≤N
β 6=0

ε|α+β|

M(α, β)
‖xβ−ej∂α(ul)‖Hs ≤ Csε(S̃

s,ε
N−1[u])l.

Concerning the third term in (4.51) we can write xβ−δ̃0 =
∏l

k=1 x
γk , where γ1, . . . , γl

satisfy γ1 + . . . + γl = β − δ̃0 and |γj| ≤ |δj| (respectively (|γj| ≥ |δj|) if |β| ≤ |α|
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(respectively if |β| ≥ |α|). Then, the same arguments as in the case m ≥ 1 yield
(4.54)∑
|α+β|≤N
β 6=0

ε|α+β|

M(α, β)

∑
δ0+δ1+...+δk=α

δ0 6=0

C |δ0|+1 α!

δ1! · · · δl!
‖xβ−δ̃0

l∏
k=1

∂δku‖Hs ≤ Csε(S̃
s,ε
N−1[u])l

for ε > 0 sufficiently small. The estimate of the terms in (4.49) with β = 0 (hence
α 6= 0) is very similar but easier, relying on the inequality

(4.55) 〈ξ〉−m|ξj| ≤ τ |ξj|+ C ′τ .

in place of (4.50). We omit the details for the sake of brevity.

End of the proof of Theorem 4.1 (the case 0 < m < 1). Using the same argument
as in the case m ≥ 1, by the variants of Propositions 3.3, 4.3 and 4.4 with S̃s,εN [f ]

and S̃s,ε∞ [f ] defined in (4.48) in place of Ss,εN [f ] and Ss,ε∞ [f ], and with the spaces Qs

replaced by Hs, and by Proposition 4.6 we obtain

S̃s,εN [u] ≤ ‖u‖Hs + C ′sS̃
s,ε
∞ [f ] + C ′sεS̃

s,ε
N−1[u] +

∑
l

(
τC ′s‖u‖l−1

Hs S̃
s,ε
N [u]

+ C ′s(εCτ + τ + ε)(S̃s,εN−1[u])l
)

for every N ≥ 1 and ε small enough. Now, choosing τ < (2
∑

l C
′
s‖u‖l−1

s )−1 we
obtain

S̃s,εN [u] ≤ 2‖u‖Hs + 2C ′sS̃
s,ε
∞ [f ] + 2C ′sεS̃

s,ε
N−1[u] +

∑
l

(
2C ′s(εCτ + τ + ε)(S̃s,εN−1[u])l

)
.

Then we can iterate the last estimate observing that, shrinking τ and then ε, the

quantity εCτ + τ + ε can be taken arbitrarily small. This gives S̃s,ε∞ [u] < ∞ and
therefore u ∈ Hsect(Rd).

5. Examples and concluding remarks

5.1. Some remarks on the analyticity estimates. Let us say a few words on
the estimates

(5.1) |∂αf(x)| ≤ C |α|+1α!〈x〉−|α| ∀α ∈ Nd, x ∈ Rd

which are assumed for the coefficients of the metric in (1.6), (cf. also the nonlin-
earity in (1.8), (1.9), and (1.13) (1.14)).

Locally they are exactly the usual estimates of real-analyticity. To better un-
derstand the meaning of the decay for |x| → +∞, let us consider the following
important class of examples. Consider a real-analytic function f in Rd satisfying,
in polar coordinates r, ω, r > 0, ω ∈ Sd−1,

f(rω) = h(r−1, ω), for r > r0, ω ∈ Sd−1,
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for some r0 > 0, where h is an analytic function on [0, r−1
0 )× Sd−1, hence analytic

up to 0 in the first variable. Let us verify that then f satisfies the estimates (5.1).
Clearly, it is sufficient to check the estimates (5.1) for large |x|. Now, by as-

sumption we have

f(x) = f(rω) =
∞∑
k=0

1

k!
ϕk(ω)r−k =

∞∑
k=0

ϕ̃k(x), |x| > r0,

where ϕk are analytic functions on Sd−1, and ϕ̃k(x) 1
k!
ϕk(ω)r−k. Observe that the

functions ϕ̃k(x) are real-analytic functions for x 6= 0 and positively homogeneous
of degree −k. Moreover, by the very definition of ϕk, for every x, |x| > r0, we have
the estimates

(5.2) |∂αϕ̃k(x)| ≤ C |α|+k+1α!,

for some constant C > 0, in some neighborhood of x (this is easily verified in polar
coordinates and then one uses the analyticity of the change of variables). Hence,
by compactness, the estimates (5.2) hold, say, for |x| = 2r0. By homogeneity we
deduce that

(5.3) |∂αϕ̃k(x)| ≤ C |α|+k+1α!

∣∣∣∣ x2r0

∣∣∣∣−k−|α| , x 6= 0.

Hence we obtain

|∂αf(x)| ≤
∞∑
k=0

|∂αϕ̃k(x)| ≤ Cα!
∞∑
k=0

∣∣∣∣ x

2r0C

∣∣∣∣−k−|α| ≤ C(2r0C)|α|α!|x|−|α|,

if |x| > 4r0C. This concludes the proof of (5.1).

As another remark, we observe that the estimates (5.1) are in fact equivalent
to requiring that f(x) extends to a bounded holomorphic function f(x + iy) in a
sector of the type (1.15) (see e.g. [11, Proposition 5.1]). This is very useful to check
the estimates (5.1) in concrete situations, as we will see below.

5.2. Metric Laplacians. Consider a smooth Riemannian metric gjk(x) in Rd.
The corresponding Laplace-Beltrami operator has the form

Lu =
d∑

j,k=1

1√
g(x)

∂j

(√
g(x)gjk(x)∂ku

)

=
d∑

j,k=1

(
gjk(x)∂j∂ku− gjk(x)

d∑
l=1

Γljk(x)∂lu

)
,
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where gjk is the inverse matrix of gjk, g = det (gjk), and the Christoffel symbols
are defined by

Γlij =
1

2

d∑
k=1

gkl (∂igkj + ∂jgik − ∂kgij) .

Let us assume that the metric is real-analytic and satisfies the estimates

(5.4) |∂αgjk(x)| ≤ C |α|+1α!〈x〉−|α|, g(x) > C−1,

for some C > 0, and every α ∈ Nd, x ∈ Rd. Then the matrix gjk satisfies (1.5) and
the estimates in (1.6). If in addition we consider V (x) and F [u] as in (1.7), (1.8),
then the equation

(5.5) −Lu+ V (x)u− λu = F [u], λ ∈ C,

is a special case of (1.4). Hence, by Theorem 1.1, every solution u ∈ Hs(Rd),
s > d/2 + 1, of (5.5), extends to a holomorphic function u(x + iy) in the sector
of Cd in (1.15), satisfying there the estimates in (1.16) for some constants C > 0,
c > 0.

As a model for the above type of metrics, one may consider the hyperboloid
Rd+1:

S = {(x, t) ∈ Rd × R : t =
√

1 + |x|2},
parametrized by x ∈ Rd. The Riemannian metric induced on S by the Euclidean
one then satisfies the estimates (5.4), as one can easily verify.

More generally, we can consider real-analytic scattering metrics in Rd. They
play an important role in geometric scattering theory, see [20, 22], [21, Chapter
6], and have received particular attention in the last years (see e.g. [15] and the
references therein). Indeed, natural perturbations of the Euclidean metric fall in
that category.

A real-analytic metric in Rd is of scattering type if for any coordinate chart
V ⊂ Sd−1 and for some r0 > 0 it has the form

(5.6) h(r−1, η; dr, rdη), for r > r0,

where r = |x|, η = (η1, η2, . . . , ηd−1) are real-analytic coordinates on V , and h is a
positive definite quadratic form in the last couple of variables, whose coefficients
are analytic functions on [0, r−1

0 )× V . Moreover one requires that h(0, η; dr, dη) is
positive-definite.3Notice that this metric approaches the conic metric h(0, η; dr, rdη)
as r → +∞, which explains the terminology, sometimes used in the literature, of
asymptotically conic metric. Notice, by comparison, that the Euclidean metric
|dx|2 in polar coordinates reads in fact dr2 + r2h′, where h′ is the usual metric on
Sd−1.

3Of course, this is equivalent to saying that h(0, η; dr, rdη) is positive definite for every r > 0.
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Now, using the remark in Subsection 5.1 one sees that, in Euclidan coordinates,
such a metric satisfies the estimates (5.4). In particular, the bound from below in
(5.4) is satisfied because h(0, ω; dr, rdω) is positive definite, and this last metric in
Euclidean coordinates has coefficients which are homogeneous functions of degree 0
(in fact, each ηj is a real-analytic function of x on R+×V , positively homogeneous
of degree 0).

5.3. The linear case. This above result for the equation (5.4) seems interesting
even in the linear case (F [u] = 0), namely for the eigenfunctions of −L + V (x).
That equation appears naturally, for example, when looking for standing wave
solutions (i.e. solutions of the type v(t, x) = eiλtu(x)) of the Schrödinger equation
i∂tv − Lv + V (x)v = 0 for scattering metrics (cf. [15]).

In the linear case we can even assume u ∈ S ′(Rd). In fact, the existence of
a parametrix for −L + V (x) (Proposition 2.3), shows that such a solution is au-
tomatically in S(Rd). Moreover, if V (x) is in addition real-valued, we know e.g.
from [17] (see also [24, Theorem 4.2.9]) that the operator −L + V (x), regarded
as a symmetric operator in L2(Rd,

√
gdx) with domain S(Rd), is essentially self-

adjoint and L2(Rd,
√
gdx) has an orthonormal basis made of eigenfunctions4. Also,

dim Ker (−L+ V (x)− λ) < ∞, which implies that the width ε of the sector in
(1.15) can then be chosen uniformly with respect to the solutions.

5.4. Sharpness of Theorem 1.1. We recall that in the case of a differential
operator with polynomial coefficients the solutions u ∈ S ′(Rd) of the equation
Pu = 0 extend to entire functions on Cd satisfying estimates (1.16) in a sector of
the form (1.15), cf. [7, Theorem 1.1]. Very simple examples show that, even in the
linear case, in Theorem 1.1 we cannot expect an entire extension for the solution
u. For example, consider, in dimension d = 1, the equation

(5.7) −u′′ + V (x)u = 0,

where V (x) = x2 + 3 + 2x2−6
(x2+1)2

. A solution is given by u(x) = 1
x2+1

e−x
2/2, which

does not extend to an entire function on C.
The following example shows that, in fact, infinitely many singularities can occur

along any fixed ray in the complex domain. Let θ ∈ (−π/2, π/2), and consider again
the equation (5.7), with

V (x) = x2 − 1− 2e−2iθ + 4e−iθx tanh(e−iθx) + 6e−2iθx tanh2(e−iθx).

By applying the remark at the end of Subsection 5.1 to the function tanh(e−iθx)
it is immediate to check that V (x) satisfies the estimates in (1.7). On the other

4Since the eigenvalues of the metric are bounded from below and from above, L2(Rd, dx) =
L2(Rd,√gdx) as normed space.
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hand, the function

u(x) = cosh−2(e−iθx)e−x
2/2

is a solution of (5.7) and extends to a meromorphic function in the complex plane
with poles at z = ei(θ+π/2)(2k + 1)π, k ∈ Z.

This shows that in Theorem 1.1, even in the linear case, the form of the domain
of holomorphic extension as a sector is sharp in general. The following example
shows a similar phenomenon in the nonlinear case, even for the standard harmonic
oscillator.

Consider the following nonlinear perturbation of the harmonic oscillator, in di-
mension d = 1, at the first eigenvalue λ = 1:

(5.8)

{
u′′ − x2u+ u =

(
d
dx
− x
)
uk, k ≥ 2,

u(0) = u0 > 0

It was shown in [7] that the solution of (5.8) is given by

(5.9) u(x) = e−
x2

2

[
λ+
√

2k − 2 Erfc
(√k − 1

2
x
)] 1

1−k

with λ = u1−k
0 −

√
π(k−1)

2
, where we used the complementary error function defined

by

Erfc(t) =

∫ +∞

t

e−v
2

dv.

Here and in the following, roots are defined to be positive for positive numbers,
with continuous extension to the complex domain, i.e., we take principal branches.

Suppose now λ > 0, that is 0 < u0 <
(π(k−1)

2

) 1
2−2k . In this case, since

0 < λ < λ+
√

2k − 2 Erfc

(√
k − 1

2
x

)
,

the solution u(x) in (5.9) is well defined analytic in R and

0 < u(x) < λ
1

1−k e−
x2

2 .

Similar estimates are valid for u′(x), u′′(x). Hence we have u ∈ H2(R), and The-
orem 1.1 applies, implying the desired holomorphic extension u(z) to a sector.
However, as observed in [7], u(z) is not entire, but has a singularity at z0 ∈ C when

(5.10) λ+
√

2k − 2 Erfc

(√
k − 1

2
z0

)
= 0,

where Erfc(z) is the entire extension of Erfc(x). Such singularities in fact occur,
because the great Picard theorem in the complex domain grants the existence of
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infinitely many solutions z0 of (5.10) for all λ ∈ C, but for a possible exceptional
value, see [30].

Indeed, we now prove the following more precise result.

Proposition 5.1. For every λ > 0, but for a possible exceptional value, and every
ε > 0, u(z) has a sequence of singularities which tends to infinity in the sector
π/4 < arg z < π/4 + ε or in 3π/4− ε < arg z < 3π/4.

Proof. Using the great Picard theorem as above and the reflection properties

Erfc(z) = Erfc(z), Erfc(−z) =
√
π − Erfc(z) =

√
π − Erfc(z),

which can be verified directly from the definition, it is sufficient to prove that

(5.11) Erfc(z)→ 0 as z →∞ in the sector |arg z| ≤ π/4,

and that, for every ε > 0,

(5.12) |Erfc(z)| → +∞ as z →∞ in the sector π/4 + ε < arg z ≤ π/2.

Now, (5.11) follows at once from the expansion

Erfc(z) =
e−z

2

2z
(1 +R(z)) with |R(z)| ≤ 1√

2|z|2
,

valid when |arg z| ≤ π/4; see e.g. [19, pages 18–20].
The property (5.12) can be verified directly as follows. Observe that, for z =

x+ iy, x > 0, y > 0, we can write

Erfc(z) = −
∫
γ

e−u
2

du,

where the path γ is given by the hyperbola through z = x+iy with parametrization
u = γ(t) = xy

t
+ it, t ∈ (0, y]. Then

|Erfc(x+ iy)| =
∣∣ ∫ y

0

e−
x2y2

t2
+t2
(
−xy
t2

+ i
)
dt
∣∣∣

≥
∫ y

0

e−
x2y2

t2
+t2 dt.

Let 0 < µ < 1 be a number to be chosen later. We have

|Erfc(x+ iy)| ≥
∫ y

µy

e−
x2y2

t2
+t2 dt ≥ (1− µ)ye−µ

−2x2+µ2y2 .

Now, if z belongs in addition to the sector in (5.12), we have 0 < x < ε̃y, for some
ε̃ < 1. We obtain then

|Erfc(x+ iy)| ≥ (1− µ)ye(µ2−ε̃2µ−2)y2 .



NONLINEAR HARMONIC OSCILLATORS 35

If we choose µ >
√
ε̃, we get |Erfc(x + iy)| → +∞ as y → +∞, which gives the

desired conclusion when x = Re z > 0. The case when x = 0 is immediate, because

Erfc(iy) = −
∫ y

0

et
2

dt+

√
π

2
.

Property (5.12) is then proved.
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