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Abstract. We introduce a role-based access control calculus for modelling dy-
namic web data and a corresponding type system. It is an extension of the Xdπ
calculus proposed by Gardner and Maffeis.
In our framework, a network is a parallel composition of locations, where each
location contains processes with roles and a data tree whoseedges are associated
with roles. Processes can communicate, migrate from a location to another, use
the data, change the data and the roles in the local tree. In this way, we obtain a
model that controls process access to data.
We propose a type system which ensures that a specified network policy is re-
spected during computations. Finally, we show that our calculus obeys the fol-
lowing security properties: (1) all data trees and processes with roles in a location
agree with the location policy; (2) a process can migrate only to a location with
whose policy it agrees; (3) a process with roles can read and modify only data
which are accessible to it; (4) a process with roles can enable and disable roles in
agreement with the location policy.

1 Introduction

One of the essential steps in managing distributed systems with semi-structured data is
the security administration, which is one of the main features in prevention of unautho-
rized access to system resources. Role-based access control (RBAC) [24] is an access
control method that relies on the notions of users, roles andpermissions. It controls the
access of users to the system resources in accordance with the activities they have to
perform in the system. In accessing the system resources, a user has those permissions
which are assigned to its roles. In a system, roles are statically defined by the organ-
isation structure, hence the security administration is reduced to the management of
permissions. This makes RBAC a simplified and desirable access control technology.

With the aim of application of RBAC to peer-to-peer model of semi-structured web
data, we introduced therXdπ calculus, a formal model for dynamic web applications
with RBAC, and proposed a type system to control its safety. TherXdπ calculus is a
role-based extension of the Xdπ calculus of Gardner and Maffeis [12]. The Xdπ cal-
culus models process communication, and process migration, as distributedπ-calculus,
and local interaction between processes and data. A networkis a parallel composition
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of locations, where each location contains a process and a data tree. In our calculus,
by assigning roles both to data trees and processes, we obtain a model that allows role
administration (i.e. activation and deactivation). Each location has its policy which con-
sists of thedata accessibility policy, the set of minimal roles that a process needs to have
to access the data, and theadministration policy, the sets of roles which can be enabled
or disabled at that location.

As a first contribution of this paper, in Section 2, we design Xdπ in a RBAC sce-
nario and extend it with commands for role administration, i.e., for enabling and dis-
abling roles. More precisely, the commandenablep(r) allows the roler to access data
identified by the pathp and the commanddisablep(r) forbids the roler to access
identified data.

As a second contribution of this paper, in Section 3, we propose a type system for
rXdπ and prove that a specified network policy is respected duringcomputations. In
our framework, a well-typed network is a parallel composition of well-typed locations
with different names and if a location is well typed, then both the enclosed tree and
process with roles do not contain occurrences of free variables.

Our calculus is enriched with a type system assuring that:
– if a process can access an edge in a well-typed tree, then the edge is connected to

the root of the tree by a path whose edges are all accessible tothat process;
– only processes agreeing with the location policy can be activated at a location and

can migrate to it;
– a process can modify a subtree only if it can access all the edges of the subtree;
– agreeing with the location policy, a process can enable a role at an edge or disable

a role from a subtree if it can access the path which identifiesit.

Finally, in Section 4, we prove that the type system obeys thefollowing security
properties:

– all data trees and processes with roles in a location agree with the location policy.
This holds even for processes with roles generated by reading data or activating
scripts and for trees obtained by changing data or activating/deactivating roles;

– a process can migrate only to a location with whose policy it agrees;
– a process with roles can read and modify only data which are accessible to it;
– a process with roles can enable and disable roles in agreement with the location

policy.

The main contribution of the present paper is the explicit dynamic association of
roles to data in agreement with a distributed policy which enables resource access con-
trol.

Outline of the paper.In Section 2 we introduce the syntax and the reduction rules
for therXdπ calculus. Section 3 is devoted to its type system. Security properties of
the system are stated in Section 4. The proofs are the contentof the Appendix.

1.1 An example

As an example, we use a university campus (network) containing locations such as a
faculty, a classroom and a public space, represented by:

FACULTY[[ TF ‖ RF ]] ‖‖ CLASSROOM[[ TC ‖ RC ]] ‖‖ PUBLIC[[ TP ‖ RP ]]
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where:
– FACULTY, CLASSROOM andPUBLIC are names of locations;
– ‖‖ is the operator of parallel composition of networks;
– TF, TC andTP are trees whose labelled edges are decorated by sets of rolesand

whose leaves contain data;
– RF, RC andRP are processes with roles;
– ‖ is the separator between data trees and processes.

Each edge in a tree is assigned a set of roles that a process is required to have in order
to access it. For example, letst andprof be the roles of students and professors, re-
spectively. Let the treeTC contain the edgeconnectionwith roleprof and let the tree
TP contain the edgeconnection with rolesprof andst. This represents a situation
in which students can access theconnection in the PUBLIC location but not in the
CLASSROOM, while professors can access theconnection in both locations.

The set of roles is partially ordered, implying that data accessible to processes with
lower roles are also accessible to processes with higher roles. For example, by stating

st ⊏ prof

we get that all data accessible to students are also accessible to professors. With this
order we can get the previous situation if we decorate the edge connection in the
PUBLIC location only with the rolest instead with both rolesst andprof.

The location policy ofCLASSROOM can prescribe that:
– the minimal role to access data isst;
– a process with roleprof can enable and disable the rolest to access data.

We would represent such a policy by({st}, ({prof}, st), ({prof}, st)).
A process with roleprof can enable and disable students to access theconnection

in theCLASSROOM. A command for enabling isenablepC
(st), if pC is the path from the

root of the treeTC to the edgeconnection with roleprof. After the execution of this
enabling command the treeTC will contain the edgeconnectionwith both rolesprof
andst. In this way the classroom policy enables professors to allow students to do
exercises using internet during the class.

2 rXdπ calculus: role based access control for dynamic web data

2.1 Syntax ofrXdπ

We design a model of dynamic web data in a RBAC scenario. Our starting point is
the Xdπ of [12] which we equip with roles. We model a peer-to-peer network as a set
of connected locations, where each location has a policy andconsists of a data tree
labelled with roles and a process with roles. Processes withroles can, as in pure Xdπ,
communicate with other processes, migrate to other location and update the local data.
A novelty is that all these actions are controlled by roles. Moreover, processes can
administrate roles by enabling and disabling them.



4 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jakšić, Jovanka Pantović

Roles. We assume a countable set of rolesR, and user, s, t to range over elements of
R. Let (R,⊑) be a lattice and let⊥,⊤ ∈ R be its bottom and top element, respectively.
The operation of join is denoted by⊔. By α, ρ, σ we denote non-empty sets of roles and
by τ, ζ sets of roles containing the⊤ element. Each process is assigned a set of roles
and each edge in trees is assigned a set of roles containing the⊤ element. For the sake
of simplicity we refer to them as to processes and trees with roles, respectively.

Different processes can have different sets of roles and thesame role can be assigned
to different edges and different processes.

2.1.1 Trees

T ::= ∅T empty rooted tree

|| x tree variable

|| T | T composition of trees, joining the roots

|| a
τ [T ] edge labelledaτ with subtreeT

|| a
τ [�Π ] edge labelledaτ with script�Π

|| aτ [p@λ] edge labelledaτ with pointerp@λ

p ::= a
α || x || p/p

V, U ::= �Π || p@λ || T

Table 1.Syntax of treesT , pathsp and data termsV, U

The data model is an unordered edge-labelled rooted treeT with leaves containing
empty trees (∅T ), scripts (�Π) and pointers (p@λ). The syntax of trees is presented in
Table 1, usingaτ to denote a tree edge with labela and with set of rolesτ . We useτ
to denote sets of roles that contain the role⊤. In the examples we also allow standard
data in the tree leaves.

A script�Π is a static process embedded in a tree that can be activated bya process
from the same location. The symbolΠ ranges over processes with roles and variables.

A pathp identifies data in a tree. The syntax of paths is given in Table1, usingp to
range over paths. In this table

– aα is a path edge with labela and with rolesα,
– x is a variable and
– / is the path composition.

A pointer, p@λ, refers to the set of data identified by the pathp in the tree at the
locationλ. The symbolλ ranges over location names and variables.

Scripts, pointers and trees are referred to asdata termsor simplydata. UsingU, V
to range over data terms, their syntax is given in Table 1.
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In rXdπ roles are employed for defining the way how a path identifies data terms
in a tree. A path edgeaα complies with a tree edgeaτ if for each role ofα there is at
least one smaller or equal role inτ. More formally, let us define

τ ≦ α iff (∀s ∈ α)(∃t ∈ τ) t ⊑ s

Then we have that a path edgeaα complies with a tree edgeaτ if τ ≦ α. In general:

A pathaα1

1 / . . . /aαn

n complies witha tree pathaτ1

1 / . . . /aτn

n if τi ≦ αi for 1 ≤ i ≤ n.

Then we can define:

Definition 1. A path identifiesa data termV in a treeT if it complies with the tree
path from the root ofT to V .

Example 1.Let ⊥ ⊏ st ⊏ sti ⊏ prof ⊏ dean ⊏ ⊤, where i ∈ I for some finiteI,
and let the data treeTF of the locationFACULTY be parallel composition of treesTi,
i ∈ I, where

Ti ≡ service{sti,⊤}[records{prof,⊤}[ marki ] | booklet{sti,⊤}[ marki ] ].

The pathservice{prof}/records{prof} complies with the tree pathservice{sti,⊤}/
records{prof,⊤}, identifying marki in the records. The marks in the booklet can be
identified with the pathservice{sti,⊤}/booklet{sti}.

2.1.2 Processes

At one location we can have a finite number of processes, with different roles, running
in parallel and possibly sharing some communication channels. We define processes
with roles by means of pure processes, by decorating pure processes with sets of roles.
The definitions of pure processes and processes with roles are mutually recursive. We
useP, Q to denote pure processes andR, S to denote processes with roles.

Pure processes.Table 2 gives the formation rules of pure processes. We useγ to range
over channel names (decorated by value types) and variables. The processes that we are
concerned with are essentially Xdπ processes [12] to which we add commands for ad-
ministration of access rights. More precisely we consider four kinds of pure processes:

– π-calculus processes [22], for modelling local communication;
– go command, for modelling process migration between locations, as inDπ calcu-

lus [17];
– run, read and change commands, for modelling interaction of processes with

local data. Activating the execution of scripts embedded inlocal tree is done with
run. For reading (copy) the data from a tree we useread and for changing (cut,
paste,...) a tree we usechange. The last two commands are in place of theupdate

command of [12];
– new commandsenable anddisable for changing permissions to access data.
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Free variablesare defined as usual, taking into account that input,read andchange
commands are binding variables.

P ::= 0 the nil process

|| P | P parallel composition of pure processes

|| γ̄〈v〉 output of valuev on channelγ

|| γ(x).P input parametrised by a variablex

|| !γ(x).P replication of an input process

|| go λ.R migrates to locationλ, continues as the process with rolesR

|| runp runs the scripts identified by pathp

|| readp(χ).P reads data identified by pathp and matching withχ

|| changep(χ, V ).P changes data identified by pathp and matching withχ usingV

|| enablep(r).P allows roler to access data identified by pathp

|| disablep(r).P forbids roler to access data identified by pathp

R ::= Pqρ single pure processP with rolesρ assigned to it

|| R|R parallel composition of processes with roles

|| (νcTv)R restriction of channel name

v ::= cTv || �R || l || p || T

χ ::= �x(σ,E,D) || y(α)@x(σ,E,D) || x(σ,E,D,τ,ζ)

Table 2.Syntax of pure processesP , processes with rolesR, valuesv and patternsχ

A valueis either a channel name decorated by a value type, a script, alocation name,
a path or a tree. Usingv to range over values, the syntax of values is given in Table 2.

As arguments in commands for reading and changing the tree wehavepatterns
(ranged over byχ), whose syntax is given in Table 2. A pattern is:

– a script whose variable is decorated with a location policy (defined below) or
– a pointer whose path variable is decorated with a set of rolesand whose location

variable is decorated with its policy or
– a tree variable decorated with a location policy and two setsof roles.

By |χ| we denote the data term obtained fromχ by erasing all decorations.
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Processes with Roles.The syntax of processes with roles is given in Table 2. A process
with roles is obtained from a pure process by assigning a set of roles ρ to it or as a
parallel composition of such processes. Processes with (possibly different) roles can
share private communication channels (restriction operator ν).

Another novelty ofrXdπ is the flexibility of data access which is due to introduc-
tion of roles. Namely, each process with at least one role bigger than or equal to one
role in α has the permission to access the path edgeaα. For this reason we introduce
the relation≤ between sets of roles defined by:

α ≤ ρ if (∃s ∈ α)(∃r ∈ ρ) s ⊑ r.

Then a process with rolesρ can access the edgeaα if α ≤ ρ. More generally:

A process with rolesρ canaccessa pathaα1

1 / . . . /aαn

n if αi ≤ ρ for 1 ≤ i ≤ n.

Similarly a process with rolesρ can accessa tree pathaτ1

1 / . . . /aτn

n if τi ≤ ρ for
1 ≤ i ≤ n. Lastly we define:

Definition 2. A process with roles canaccessa data termV in a treeT if it can access
the tree path from the root ofT to V .

Note that all processes with role⊤ can access all data, since the sets of roles associated
to tree edges are never empty.

Example 2.A process with role{prof} can access the tree paths

service{sti,⊤}/records{prof,⊤} andservice{sti,⊤}/booklet{sti,⊤}

and then it can access marks both in the records and in the student’s booklet, while a
process with role{sti} can access only marks in the booklet since it can access the
tree pathservice{sti,⊤}/ booklet{sti,⊤}. If we suppose that fori 6= j the roles
sti andstj are unrelated, a process with the role{stj} cannot access the tree path
service{sti,⊤}/ booklet{sti,⊤}.

2.1.3 Networks

Networks are the main syntactic features of the untypedrXdπ calculus. A network
N is a parallel composition (‖‖) of locationsl consisting of a data treeT and a process
R, where roles are associated both to data trees and to processes. Processes at different
locations can share communication channelscTv. The syntax of networks is given in
Table 3. We usel, m to range over location names,c to range over channel names and
Tv to denote a value type as defined in Table 9.

N ::= 0 || N ‖‖ N || l[[ T ‖ R ]] || (νcTv)N

Table 3.Syntax of networks
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2.1.4 Location Policies

(ρ, r) ∈+ E ⇐⇒ ∃(ρ′, r′) ∈ E such thatρ′ ≤ ρ andr′ ⊑ r
(ρ, r) ∈− D ⇐⇒ ∃(ρ′, r′) ∈ D such thatρ′ ≤ ρ andr ⊑ r′

Table 4.Definitions of∈+ and∈−.

A location policy is the triple(σ, E ,D), whereσ is a set of roles, whereasE andD
are subsets of{(ρ, r) : ρ ⊆ R, r ∈ R}. The data accessibility policy is given by the
setσ, the set of minimal roles a process is required to have to access the data at that
location. The administration policy is given by the other sets which prescribe changes
of data access rights as follows (∈+ and∈− are defined in Table 4):

– if (ρ, r) ∈+ E , a process with rolesρ can give the permission to (enable) the roler
to access the data;

– if (ρ, r) ∈− D, a process with rolesρ can take the permission from (disable) the
roler to access the data.

We introduce∈+ and∈− in order to:
– allow processes with higher roles to modify access rights which processes with

lower roles can already modify (conditionρ′ ≤ ρ);
– allow to enable higher roles when lower roles can be enabled (conditionr′ ⊑ r);
– allow to disable lower roles when higher roles can be disabled (conditionr ⊑ r′).

Definition 3. A location policy(σ, E ,D) is well-formed if(ρ, r) ∈ E∪D impliesr 6= ⊤
andσ ≦ ρ ∪ {r}.

The conditions for a location to be well formed require that:
– the role⊤ is neither enabled nor disabled: this agrees with the assumption that all

sets of roles decorating tree edges contain⊤;
– the roles involved in changing access rights can be roles of some edges in the local

tree, i.e. they are not less than some roles inσ.

Example 3.The policy(σF, EF,DF) of theFACULTY, with σF = {sti : i ∈ I}, EF =
{({prof}, as)}, andDF = {({dean}, sti) : i ∈ I}, is well formed. According to this
policy:

– a student with rolest is not allowed to access any data at the location;
– a professor can give the permission to a teaching assistant to edit the records;
– the dean can forbid the studenti to access some data;
– it holds that({dean}, prof) ∈+ E .

In what follows we will consider only well-formed location policies. We assume a fixed
functionT which associates locations with their policies.

T (l) = (σ, E ,D) if (σ, E ,D) is the policy ofl.
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2.2 Reduction Rules

The reduction relation is the least relation on networks which is closed with respect to
the structural equivalence, reduction rules given in Table8 and reduction contexts given
by:

C ::= − || C ‖‖ N || (νcTv)C

(trees) V ≡ V ′ ⇒ a
ρ[V ] ≡ a

ρ[V ′]

(scripts) R ≡ R′ ⇒ �R ≡ �R′

(processes with roles)(νcTv)0qρ ≡ 0qρ

(P | Q)qρ ≡ Pqρ | Qqρ

v ≡ v′ ⇒ c̄Tv〈v〉qρ ≡ c̄Tv〈v′〉qρ

(νcTv)(νdTv′

)R ≡ (νdTv′

)(νcTv)R

cTv 6∈ fn(R) ⇒ R | (νcTv)S ≡ (νcTv)(R | S)

V ≡ V ′ ⇒ changep(χ,V ).Pqρ ≡ changep(χ, V ′).Pqρ

(networks) (νcTv)0 ≡ 0

(νcTv)(νdTv′

)N ≡ (νdTv′

)(νcTv)N

cTv 6∈ fn(N) ⇒ N ‖‖ (νcTv)N′ ≡ (νcTv)(N ‖‖ N′)

T ≡ T ′ ∧ R ≡ R′ ⇒ l[[ T ‖ R ]] ≡ l[[ T ′ ‖ R′ ]]

cTv 6∈ fn(T ) ⇒ l[[ T ‖ (νcTv)R ]] ≡ (νcTv)l[[ T ‖ R ]]

Table 5.Structural equivalence

The structural equivalence is the least equivalence relation on networks that satisfies
alpha-conversion, the commutative monoid properties for(∅T , | ) on trees, for(0qρ, | )
on processes with roles and for(0, ‖‖ ) on networks, and the axioms of Table 5. As
usualfn is the set of free channel names occurring in a process with roles or in a tree or
in a network.

The reduction relation describes four forms of interactions:

– local interaction between processes with roles (rules (com) and (com!));
– interaction between locations, describing migration of processes with roles (rules

(go) and (stay));
– local interaction between processes with roles and trees, describing execution of

scripted processes and data manipulation (rules (run), (read) and (change));
– local interaction between processes with roles and trees, describing role adminis-

tration (rules (enable) and (disable)).
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The communication rules (com) and (com!) are from theπ-calculus [22]. Processes
can communicate only if they are in the same location. There are two rules for mi-
gration. Rule (go) describes migration to a distinct location. The other rule, (stay),
describes staying at the current location.

map(p, ∅T , f, op) =

(

∅T if op = |,

∅ if op = ∪

map(p, T1 | T2, f, op) = (map(p, T1, f, op)) op (map(p, T2, f, op))

map(p,bτ [V ], f, |) =

8

>

<

>

:

bτ [f(V )] if p = bα, andτ ≦ α ,

bτ [map(q, V, f, |)] if p = bα/q, andτ ≦ α ,

bτ [V ] otherwise

map(p,bτ [V ], f,∪) =

8

>

<

>

:

f(V ) if p = bα, andτ ≦ α ,

map(q, V, f,∪) if p = bα/q, andτ ≦ α ,

∅ otherwise

Table 6.Definition of the functionmap(p, T, f, op)

The reduction rules (run), (read), (change), (enable) and (disable) use the func-
tions defined in Table 7 by means of the functionmap given in Table 6. The function
map takes as arguments a pathp, a treeT , a functionf and an operatorop ∈ {|,∪}. It
is defined by cases:

– if the tree is empty, then the result is the neutral element for op;
– if the tree is a parallel composition of sub-trees, then the result is the application of

op to the values returned by applyingmap to the sub-trees;
– otherwise,map checks if the top path edge complies with the top tree edge and:

• in case of compliance
∗ if the path is only one edge, thenmap applies the functionf to the so

identified data term, and it returns a tree ifop = | and the function value if
op = ∪;

∗ if the path is longer, thenmap is applied recursively to the so identified
data term;

• in case of noncompliance the result is the current tree ifop = | and the empty
set ifop = ∪.

The functionsrn, sub, ch, en anddi are obtained from the functionmap by spe-
cialising f andop. For the first two functionsop = ∪ and the returned values are sets,
for the remaining functionsop = | and the returned values are trees.

Forrn the functionf checks if the identified data is a script. If it is the case, it returns
the set which contains the found process, and the empty set otherwise.

For the functionssub andch we need the typed matching functionmatch which,
in order to check if a data term agrees with a pattern, requires not only the data term to
be of the form of the three pattern shapes, respectively, a script, a pointer, or a tree, but
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rn(p, T ) = map(p, T, λv.

(

{R} if v = �R

∅ otherwise
,∪)

sub(p,χ, T ) = map(p, T, λv.

(

{{v/|χ|}} if match(χ, v),

∅ otherwise
,∪)

ch(p, χ, V, T ) = map(p, T, λv.

(

V {{v/|χ|}} if match(χ, v),

v otherwise
, |)

en(p, r, T ) = map(p, T, λv.(v)+r, |)

di(p, r, T ) = map(p, T, λv.(v)−r, |)

where

(∅T )+r = ∅T (∅T )−r = ∅T

(T1|T2)
+r = (T1)

+r|(T2)
+r (T1|T2)

−r = (T1)
−r|(T2)

−r

(aτ [U ])+r = a
τ∪{r}[U ] (aτ [U ])−r = a

τ\\{r}[(U)−r]
(p@l)+r = p@l (p@l)−r = p@l
(�R)+r = �R (�R)−r = �R

Table 7.Definitions of functionsrn, sub, ch, en anddi

it requires also the data term to satisfy the type information given by the pattern. This
means that:
(1) if the pattern is�x(σ,E,D), then the data term must be a script which can run at

locations with policy(σ, E ,D),
(2) if the pattern isy(α)@x(σ,E,D), then the data term must be a pointer in which

(i) the last edge of the path has the setα of roles and
(ii) the policy of the location is(σ, E ,D),

(3) if the pattern isx(σ,E,D,τ,ζ), then the data term must be a tree
(i) which can stay at locations with policy(σ, E ,D) and
(ii) such that the union of the sets of roles associated to thetop edges isτ and
(iii) such that a process with rolesρ ≥ ζ can access the whole tree.

These conditions are enforced by using the type assignment system of Section 3. More
precisely the definition of thematch function is:
(1) match(�x(σ,E,D), �R) if ⊢ R : ProcRole(σ, E ,D);
(2) match(y(α)@x(σ,E,D), p@l) if ⊢ p : Path(α) and⊢ l : Loc(σ, E ,D);
(3) match(x(σ,E,D,τ,ζ), T ) if ⊢ T : Tree(σ, E ,D, τ, ζ).

In sub the functionf returns a substitution (denoted by{{v/|χ|}}) if the identified
data matches the given pattern. If the data and the pattern are pointers, then the sub-
stitution replaces the location variable with the locationand the path variable with the
path. In the other case the substitution simply replaces thepattern variable with the data.
More precisely we define:

– {{�R/�x}} = {R/x};
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(com) l[[ T ‖ c̄Tv〈v〉qρ′

| cTv(z).Pqρ | R ]] → l[[ T ‖ P{v/z}qρ | R ]]

(com!) l[[ T ‖ c̄Tv〈v〉qρ′

| !cTv(z).Pqρ | R ]] → l[[ T ‖ !cTv(z).Pqρ | P{v/z}qρ | R ]]

(go) l[[ T1 ‖ go m.R | R1 ]] ‖‖ m[[ T2 ‖ R2 ]] → l[[ T1 ‖ R1 ]] ‖‖ m[[ T2 ‖ R | R2 ]]

(stay) l[[ T ‖ go l.R | R′] → l[[ T ‖ R | R′ ]]

(run)
rn(p, T ) = {R1, . . . , Rn}

l[[ T ‖ runpq
ρ | R ]] → l[[ T ‖ R1 | . . . | Rn | R ]]

(read)
sub(p, χ, T ) = {s1, . . . , sn}

l[[ T ‖ readp(χ).Pq
ρ | R ]] → l[[ T ‖ Ps1q

ρ | . . . | Psnq
ρ | R ]]

(change)
ch(p, χ, V, T ) = T ′

l[[ T ‖ changep(χ, V ).Pq
ρ | R ]] → l[[ T ′ ‖ Pq

ρ | R ]]

(enable)
en(p, r, T ) = T ′

l[[ T ‖ enablep(r).Pq
ρ | R ]] → l[[ T ′ ‖ Pq

ρ | R ]]

(disable)
di(p, r, T ) = T ′

l[[ T ‖ disablep(r).Pq
ρ | R ]] → l[[ T ′ ‖ Pq

ρ | R ]]

Table 8.Reduction rules

– {{p@l/y@x}} = {p/y, l/x};
– {{T/x}} = {T/x}.

In case of mismatch the result is the empty set.
The functionch has an extra argumentV , the data term in which the given pattern

is replaced with the identified data in case of matching between the identified data and
the given pattern. More precisely, the functionf in ch returns the dataV in which the
given pattern is replaced with the identified data in case of matching, or it returns the
identified data otherwise.

Theen anddi functions use the auxiliary mappings( )+r and( )−r, respectively.
The mapping( )+r adds the roler to the first tree edges starting from the roots of the
subtrees identified by pathp, if any, or does nothing otherwise. The mapping( )−r

removes all the roles less than or equal to the roler from all the edges in the subtrees
identified by pathp, if any, or does nothing otherwise. In fact we define:

τ \\{r} = {s ∈ τ | s 6⊑ r}.

The typing rules assure thatr 6= ⊤, so we never get a set of roles without⊤ as a result.

Example 4.If we are given the tree

T ≡ records{prof,⊤}[ marki ] | booklet
{sti,⊤}[ marki ],



Types for Role-Based Access Control of Dynamic Web Data 13

then

(T )+as ≡ records{as,prof,⊤}[ marki ] | booklet
{sti,as,⊤}[ marki ] and

(T )−sti ≡ records{prof,⊤}[ marki ] | booklet
{⊤}[ marki ].

Example 5.The value of(T )+r where

T ≡ a{s1,s2,⊤}[�R] | a{s1,s3,⊤}[b{s3,⊤}[p@λ]]

will be the tree with the roler added to the top edges:

T ′ ≡ a{s1,s2,r,⊤}[�R] | a{s1,s3,r,⊤}[b{s3,⊤}[p@λ]].

If we apply the mapping( )−s2 to the obtained treeT ′ and if s3 ⊑ s2, while the other
roles are unrelated, we will get

(T ′)−s2 ≡ a{s1,r,⊤}[�R] | a{s1,r,⊤}[b{⊤}[p@λ]].

The processrunpq
ρ in rule (run) activates in parallel all the scripts identified by the

pathp in the local tree using the functionrn.
In rule (read) the processreadp(χ).Pqρ finds all the data terms identified by the

pathp in the local tree and matchingχ to obtain a set of substitutions using the function
sub. For all the substitutionss in this set it activatesPsqρ.

The change processchangep(χ, V ).Pqρ modifies the local tree using the function
ch. It finds the set of data terms identified by the pathp and matching withχ. For each
data termU in this set the change process replaces it byV {{U/|χ|}}.

Rules (enable) and (disable) add and remove the roler starting from the roots of
the subtrees identified by the pathp. The difference is that rule (enable) only adds the
role to the edges starting from these roots, while rule (disable) removes the role from
all the edges in the subtrees.

The type system of next section will assure that all paths which occur in a process
with roles are accessible to that process.

Example 6.The net

N = m[[ a{t,⊤}[b{s}@l] ‖ Pqρ′

]] ‖‖ l[[ b{s,⊤}[c{⊤}[∅T ]] ‖ 0qρ ]],

where
P = reada{t}(y({s})@x(σ,E,D)).changea{t}(y

({s})
1 @x

(σ,E,D)
1 , �R).go x.enabley(r)qρ

andT (l) = (σ, E ,D), reduces as follows:

N → m[[ a{t,⊤}[b{s}@l] ‖ P ′qρ′

]] ‖‖ l[[ b{s,⊤}[c{⊤}[∅T ]] ‖ 0qρ ]]

→ m[[ a{t,⊤}[�R] ‖ go l.enableb{s}(r)qρqρ′

]] ‖‖ l[[ b{s,⊤}[c{⊤}[∅T ]] ‖ 0qρ ]]

→ m[[ a{t,⊤}[�R] ‖ 0qρ ]] ‖‖ l[[ b{s,⊤}[c{⊤}[∅T ]] ‖ enableb{s}(r)qρ ]]

→ m[[ a{t,⊤}[�R] ‖ 0qρ ]] ‖‖ l[[ b{s,⊤}[c{r,⊤}[∅T ]] ‖ 0qρ ]]

whereP ′ = changea{t}(y
({s})
1 @x

(σ,E,D)
1 , �R).go l.enableb{s}(r)qρ. This example

shows how by means ofread andchange commands we can use the data in trees for
modifying both the processes and the trees.
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3 Type Assignment forrXdπ

In this section we introduce a type system forrXdπ in order to control the commu-
nication of values, the migration of processes and the access of processes to data. In
Table 9 we introduce the syntax of types corresponding to thesyntactic categories from
Section 2.1.

A tree typeTree(σ, E ,D, τ, ζ) is well formed if σ ≦ τ, meaning that each role
appearing at initial branches of the tree has to be bigger than or equal to a role from
the setσ of minimal roles which is given by location policy. This condition implies that
each edge in a well-typed tree has a set of roles which respects the location policy.

A process typeProc(σ, E ,D, ρ) is well formed ifσ ≤ ρ. This requirement guar-
anties that the process has at least one role bigger than or equal to one role belonging to
the set of minimal roles prescribed by the location policy.

In the following we will consider only well-formed types.

Loc(σ, E ,D) type of locations with policy(σ, E ,D)
Script(σ,E ,D) type of scripts which can be activated

at locations with policy(σ, E ,D)
Path(α) type of paths having the last edge with set of rolesα
Pointer(α) type of pointers whose path is typed byPath(α)
Tree(σ,E ,D, τ, ζ) type of trees, which can stay at locations with policy(σ, E ,D),

with initial branches askingτ and which can be
completely accessed by processes with at least one role ofζ

Proc(σ,E ,D, ρ) type of pure processes, which can stay at locations
with policy (σ, E ,D) and which can be assigned rolesρ

ProcRole(σ,E ,D) type of processes with roles which can stay
at locations with policy(σ, E ,D)

Ch(Tv) type of channels communicating values of typeTv
Net type of networks

Tv ranges overvalue typesdefined by:

Tv ::= Ch(Tv) || Loc(σ, E ,D) || Script(σ, E ,D) || Path(α) || Tree(σ,E ,D, τ, ζ)

Table 9.Syntax of types and definition of value type

An environmentΓ associates variables with value types and with types of processes
with roles, i.e. we define:

Γ ::= ∅ || Γ, x : Tv || Γ, x : ProcRole(σ, E ,D)

We use the environments by the standard axioms:

(Ax1)
Γ, x : Tv ⊢ x : Tv

(Ax2)
Γ, x : ProcRole(σ, E ,D) ⊢ x : ProcRole(σ, E ,D)
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The typing rule for locationsuses the functionT :

T (l) = (σ, E ,D)
(Loc)

Γ ⊢ l : Loc(σ, E ,D)

3.1 Typing rules for trees

Γ ⊢ Π : ProcRole(σ, E ,D)
(Script)

Γ ⊢ �Π : Script(σ, E ,D)

(PathEdge)
Γ ⊢ a

α : Path(α)

Γ ⊢ p1 : Path(β) Γ ⊢ p2 : Path(α)
(PathComp)

Γ ⊢ p1/p2 : Path(α)

Γ ⊢ p : Path(α) Γ ⊢ λ : Loc(σ, E ,D)
(Pointer)

Γ ⊢ p@λ : Pointer(α)

(EmptyTree)
Γ ⊢ ∅T : Tree(σ,E ,D, {⊤}, {⊥,⊤})

Γ ⊢ p@λ′ : Pointer(α)
(TreePointer)

Γ ⊢ a
τ [p@λ′] : Tree(σ,E ,D, τ, τ )

Γ ⊢ �Π : Script(σ, E ,D)
(TreeScript)

Γ ⊢ a
τ [�Π ] : Tree(σ,E ,D, τ, τ )

Γ ⊢ T : Tree(σ,E ,D, τ ′, ζ) τ ≦ τ ′

(TreeEdge)
Γ ⊢ a

τ [T ] : Tree(σ,E ,D, τ, τ ♮ζ)

Γ ⊢ T1 : Tree(σ,E ,D, τ1, ζ1) Γ ⊢ T2 : Tree(σ,E ,D, τ2, ζ2)
(TreeComp)

Γ ⊢ T1 | T2 : Tree(σ,E ,D, τ1 ∪ τ2, ζ1 ⊔ ζ2)

Table 10.Typing rules for scripts, paths, pointers and trees

Table 10 gives the typing rules for scripts, paths, pointersand trees.
Typing rule for scripts.If a process with rolesΠ respects the location policy(σ, E ,D),
then the script�Π respects the location policy(σ, E ,D), too.
Typing rules for paths.A pathp is of typePath(α) if the last edge in the path has the
set of rolesα.

Example 7.The type of the pathservice{sti}/records{prof} is Path({prof}).

Typing rule for pointers.A pointer is of typePointer(α) if the path has typePath(α)
and the location is typable.
Typing rules for trees.By rule (EmptyTree), an empty tree can stay in any location,
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since the relationσ ≦ {⊤} holds for anyσ. Due to rule (TreeScript), if a script�Π
respects a location policy, it can be in a leaf of the trees in locations with that policy.

In a well-typed tree, by rule (TreeEdge), an edge with rolesτ can connect a parent
node with a child node of typeTree(σ, E ,D, τ ′, ζ) only if τ ≦ τ ′. This assures that
a process which can access the treeT can also access the edge. Therefore, since in a
well-typed tree the tree pathaτ1

1 / . . . /aτn

n has the propertyτ1 ≦ . . . ≦ τn, we can
reformulate accessibility of tree paths by processes as follows:

A process with rolesρ canaccessa tree pathaτ1

1 / . . . /aτn

n if τn ≤ ρ.

In the type of the conclusion, we define

τ♮ζ =

{

τ if ζ = {⊥,⊤},

ζ otherwise.

in order to get that the last set of roles guarantees that all edges are accessible. So we
getτ♮ζ = τ if T is the empty tree orτ ′ = ζ = {⊥,⊤} (note that in this last caseτ ≦ τ ′

implies⊥ ∈ τ ) andτ♮ζ = ζ otherwise.
If a process with rolesρ ≥ ζi can access the treeTi for i = 1, 2, then a process

with rolesρ ≥ ζ1 ⊔ ζ2 = {r ⊔ s | r ∈ ζ1 & s ∈ ζ2} can access the treeT1 | T2. For
this reason we useζ1⊔ ζ2 in the conclusion of rule (TreeComp). Note thatT |∅T has the
same type asT, becauseτ ∪ {⊤} = τ andζ ⊔ {⊥,⊤} = ζ for anyτ andζ (recall that
τ, ζ range over sets of roles containing⊤).

Example 8.We assume that trees containing standard data in leaves are typed as ex-
pected.
If

T1 ≡ records{prof,⊤}[ marki ] andT2 ≡ booklet{sti,⊤}[ marki ].

we can derive:

⊢ T1 : Tree(σF, EF,DF, {prof,⊤}, {prof,⊤}) and

⊢ T2 : Tree(σF, EF,DF, {sti,⊤}, {sti,⊤}).

By (TreeComp), since{prof,⊤} ⊔ {sti,⊤} = {prof,⊤}, we derive that

⊢ T1 | T2 : Tree(σF, EF,DF, {prof, sti,⊤}, {prof,⊤}).

Since{sti,⊤} ≦ {prof, sti,⊤} and{sti,⊤}♮{prof,⊤}= {prof,⊤}, we conclude
by (TreeEdge) that

⊢ service{sti,⊤}[T1 | T2] : Tree(σF, EF,DF, {sti,⊤}, {prof,⊤}).

Notice that all the tree types are well formed since the orderon current roles issti ⊏

prof ⊏ ⊤.
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3.2 Typing rules for processes

The typing rule for channelsis as expected

(Chan)
Γ ⊢ cTv : Ch(Tv)

There are two type assignments for processes, one for pure processes and one for pro-
cesses with roles, given in Table 11.
Typing rules for pure processes.In the typing rules (In), (Out) and (Rep) we need the
notion ofcharacteristic rolesof a value typeTv (notationC(Tv)) as defined below:

C(Ch(Tv)) = C(Tv) C(Script(σ, E ,D)) = C(Loc(σ, E ,D)) = {⊥}
C(Tree(σ, E ,D, τ, ζ)) = τ C(Path(α)) = α.

Typing rules (In), (Out) and (Rep) assure that a process withrolesρ can communicate
only values with at least one characteristic role that is less than or equal to a role inρ.

In rules (Read) and (Change) we use the environmentΓχ defined by:

Γχ =







x : ProcRole(σ, E ,D) if χ = �x(σ,E,D),

x : Loc(σ, E ,D), y : Path(α) if χ = y(α)@x(σ,E,D),
x : Tree(σ, E ,D, τ, ζ) if χ = x(σ,E,D,τ,ζ)

that assigns types to the variables of the patternχ.
If α is the set of roles of the last edge in a path and the path complies with a tree

path, the conditionα ≤ ρ assures that a process with rolesρ can access the tree path.
This condition is sufficient, since the path complies with the tree path means that ifτ is
the set of roles of the edge connecting the identified data with his father thanτ ≦ α, so
we concludeτ ≤ ρ as required.

We replace a data term by a tree only if the tree obtained in that way is well typed.
This is checked by the conditionα ≦ τ ′ in rule (Change). When we replace a subtree
(i.e. whenχ = x(σ,E,D,τ,ζ)) the conditionζ ≤ ρ assures that the whole subtree is
accessible to the process.

With (Enable) and (Disable) we change roles of edges. Rule (Enable) assures that
the rolesρ can add the roler according to the location policy. Similarly, rule (Disable)
assures that the rolesρ can erase the roler according to the location policy. In rule
(Enable) the conditionα ≦ {r} gives a well-typed tree as a result. In rule (Disable) this
condition is not needed.

Example 9.Let the tree in theFACULTY location be as in Example 1. A professor can
give the permission to a teaching assistant to edit the records by the process

PP = enableservice{sti}(as).

The processPP can be typed byProc(σF, EF,DF, {prof}) because({prof}, as) ∈ EF,
i.e. it respects the location policy, and bothprof andas can access the path. Similarly,
the dean can forbid the studenti to access his booklet by the process

PD = disableservice{dean}(sti).

Because({dean}, sti) ∈ DF the type ofPD can beProc(σF, EF,DF, {dean}).
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(Nil)
Γ ⊢ 0 : Proc(σ, E ,D, ρ)

Γ ⊢ P1 : Proc(σ, E ,D, ρ) Γ ⊢ P2 : Proc(σ, E ,D, ρ)
(Par)

Γ ⊢ P1 | P2 : Proc(σ, E ,D, ρ)

Γ ⊢ γ : Ch(Tv) Γ ⊢ v : Tv C(Tv) ≤ ρ

Γ ⊢ γ̄〈v〉 : Proc(σ, E ,D, ρ)
(Out)

Γ ⊢ γ : Ch(Tv) Γ, x : Tv ⊢ P : Proc(σ, E ,D, ρ) C(Tv) ≤ ρ

Γ ⊢ γ(x).P : Proc(σ, E ,D, ρ)
(In)

Γ ⊢ γ : Ch(Tv) Γ, x : Tv ⊢ P : Proc(σ, E ,D, ρ) C(Tv) ≤ ρ

Γ ⊢!γ(x).P : Proc(σ, E ,D, ρ)
(Rep)

Γ ⊢ R : ProcRole(σ,E ,D) Γ ⊢ λ : Loc(σ, E ,D)

Γ ⊢ go λ.R : Proc(σ′, E ′,D′, ρ)
(Go)

Γ ⊢ p : Path(α) α ≤ ρ

Γ ⊢ runp : Proc(σ, E ,D, ρ)
(Run)

Γ ⊢ p : Path(α) Γ ∪ Γχ ⊢ P : Proc(σ, E ,D, ρ) α ≤ ρ

Γ ⊢ readp(χ).P : Proc(σ, E ,D, ρ)
(Read)

Γ ⊢ p : Path(α) Γ ⊢ P : Proc(σ, E ,D, ρ) α ≤ ρ

Γ ∪ Γχ ⊢

8

<

:

V : Script(σ, E ,D) or
V : Pointer(β) or
V : Tree(σ,E ,D, τ ′, ζ′) α ≦ τ ′

if χ = x(σ,E,D,τ,ζ) thenζ ≤ ρ

Γ ⊢ changep(χ, V ).P : Proc(σ, E ,D, ρ)

(Change)

Γ ⊢ p : Path(α) Γ ⊢ P : Proc(σ, E ,D, ρ) (ρ, r) ∈+ E α ≤ ρ α ≦ {r}

Γ ⊢ enablep(r).P : Proc(σ, E ,D, ρ)
(Enable)

Γ ⊢ p : Path(α) Γ ⊢ P : Proc(σ, E ,D, ρ) (ρ, r) ∈− D α ≤ ρ

Γ ⊢ disablep(r).P : Proc(σ, E ,D, ρ)
(Disable)

Γ ⊢ P : Proc(σ, E ,D, ρ)

Γ ⊢ Pq
ρ : ProcRole(σ, E ,D)

(Role)
Γ ⊢ R : ProcRole(σ, E ,D)

Γ ⊢ (νcTv)R : ProcRole(σ, E ,D)
(Res)

Γ ⊢ R1 : ProcRole(σ,E ,D) Γ ⊢ R2 : ProcRole(σ, E ,D)

Γ ⊢ R1 | R2 : ProcRole(σ, E ,D)
(ParR)

Table 11.Typing rules for pure processes and processes with roles
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Typing rules for processes with roles.If a pure processP is well typed for locations
with some policy and a set of rolesρ, then the process with rolesPqρ is well typed for
locations with the same policy.

3.3 Typing rules for networks

⊢ l : Loc(σ, E ,D) ⊢ T : Tree(σ,E ,D, τ, ζ) ⊢ R : ProcRole(σ, E ,D)
(NetLoc)

⊢ l[[ T ‖ R ]] : Net

(NetNil)
⊢ 0 : Net

⊢ N : Net
(NetRes)

⊢ (νcTv)N : Net

⊢ N1 : Net ⊢ N2 : Net N (N1) ∩N (N2) = ∅
(NetPar)

⊢ N1 ‖‖ N2 : Net

Table 12.Typing rules for networks

In typing rules for networks, given in Table 12, a locationl is well typed if it consists
of a tree and a process with roles that are well typed for locations with the policy ofl.
The functionN associates to a network the set of its location names:

N (0) = ∅ N (l[[ T ‖ P ]]) = {l} N (N1 ‖‖ N2) = N (N1) ∪ N (N2).

It is used in rule (NetPar) to assure that each location name occurs at most once in a
well-typed network.

A straightforward consequence of the type assignment rulesare the following prop-
erties:

Proposition 1. (i) Each location name occurs at most once in a well-typed network.
(ii) If a location l[[ T ‖ R ]] is well typed, then both the treeT and the process with

rolesR do not contain occurrences of free variables.

The system satisfies subject reduction:

Theorem 1 (Subject reduction).Let⊢ N : Net andN → N′, then⊢ N′ : Net.

The proof is the content of Appendix A. It uses someGenerationandSubstitution
lemmas which are also presented in Appendix A.
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4 Access Control

In this section, using subject reduction, we discuss the role based access control and
the policy maintenance of well-typed networks. More precisely, we show the following
properties.

Properties of location policies and communication:

P0 All trees and processes in a location agree with the locationpolicy;
P1 A process with roles can communicate only values with at least one characteristic

role lower than or equal to one role of the process.

Properties of migration between locations:

P2 A process with roles can migrate to another location only if it agrees with the policy
of that location.

Properties of process access to local data trees:

P3 A process with roles looks for a path in the local tree only if the path is accessible
to the process.

P4 A process with roles can get a data in the local tree only if thedata is accessible to
the process.

Properties of manipulation of local data trees by processes:

P5 A script is activated in a location only if the correspondingprocess with roles agrees
with the policy of that location;

P6 A process with roles generated by a read command in a locationagrees with the
policy of that location;

P7 A process with roles can erase a subtree of data only if it can access the whole data;
P8 A tree built by a change command in a location agrees with the policy of that

location;
P9 A process with roles can add a role to an edge in the local tree only if this is allowed

by the location policy;
P10 A tree built by an enable command in a location agrees with thepolicy of that

location;
P11 A process with roles can erase a role from a subtree of the local tree only if this is

allowed by the location policy;
P12 A tree built by a disable command in a location agrees with thepolicy of that

location.

In order to formalise and prove these properties, we use_ to denote the reflexive and
transitive closure of→ andν to denote a possibly empty sequence of channel restric-
tions. We can then express these properties by means of the following proposition:

Proposition 2. If N is a well typed network andN _ ν(l[[ T ‖ Pqρ | R ]] ‖‖ N′),
then:

P0 ⊢ T : Tree(σ, E ,D, τ, ζ) for someτ, ζ and⊢ Pqρ | R : ProcRole(σ, E ,D);
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P1 P ≡ c̄Tv〈v〉 implies⊢ v : Tv andC(Tv) ≤ ρ;
P2 P ≡ go l′.R implies⊢ R : ProcRole(σ′, E ′,D′) andT (l′) = (σ′, E ′,D′);
P3 P ≡ runp or P ≡ readp(x).P ′ or P ≡ changep(χ, V ).P ′ or P ≡ enablep(r).P

′

or P ≡ disablep(r).P
′ and⊢ p : Path(α) implyα ≤ ρ;

P4 P ≡ runp or P ≡ readp(x).P ′ or P ≡ changep(χ, V ).P ′ or P ≡ enablep(r).P
′

or P ≡ disablep(r).P
′ andp identifies a data termV in the treeT imply thatV

is connected to his father by an edge whose set of rolesτ is such thatτ ≤ ρ;
P5 P ≡ runp andrn(p, T ) = {R1, . . . , Rn} imply ⊢ Ri : ProcRole(σ, E ,D) for

1 ≤ i ≤ n;
P6 P ≡ readp(χ).P ′ andsub(p, χ, T ) = {s1, . . . , sn} imply⊢ Psi : Proc(σ, E ,D, ρ)

for 1 ≤ i ≤ n;
P7 P ≡ changep(x

(σ′,E′,D′,τ,ζ), V ).P ′ impliesζ ≤ ρ;
P8 P ≡ changep(χ, V ).P ′ andch(p, χ, V, T ) = T ′ imply⊢ T ′ : Tree(σ, E ,D, τ, ζ′)

for someζ′;
P9 P ≡ enablep(r).P

′ implies(ρ, r) ∈+ E ;
P10 P ≡ enablep(r).P

′ anden(p, r, T ) = T ′ imply ⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for
someζ′;

P11 P ≡ disablep(r).P
′ implies(ρ, r) ∈− D;

P12 P ≡ disablep(r).P
′ anddi(p, r, T ) = T ′ imply⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for

someζ′;

whereT (l) = (σ, E ,D).

The proof of this proposition is the content of Appendix B.

5 Related work and conclusion

RBAC has been introduced in the seventies and first formalised by Ferraiolo and Kuhn
[10]. There is a large literature on models and implementations for RBAC, we only
mention [24, 9, 23, 11]. The standard defined in 2004 is currently under revision by
the Committe CS1.1 within the International Committee for Information Technologies
Standards [18].

Access control has been studied in various forms for many calculi modelling con-
current and distributed systems. Sophisticated types controlling the use of resources
and the mobility of processes have been proposed for theDπ calculus [17, 15]. InDπ
the resources are channels which support binary communication between processes.
The typing system guarantees that distributed processes cannot access the resources
without first being granted the capability to do so. Processes can augment their sets of
capabilities via communication with other processes. In the SafeDpi calculus [16] pa-
rameterised code may be sent between locations and types restrict the capabilities and
access rights of any processes launched by incoming code. The paper [8] discusses a
type system for the Xdπ calculus based on security levels: security levels in data trees
are assigned only to the data in the leaves. Co-actions have been introduced for am-
bient calculi as a basic mechanism for regulating access to locations and use of their
resources [19, 5, 13]. More refined controls for ambient calculi include passwords [21,
3], classifications in groups [4, 7], mandatory access control policies [2], membranes
regulating the interaction between computing bodies and external environments [14].
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The most related papers are [1] and [6]. Braghin et al. equip theπ-calculus with the
notion of user: they tag processes with names of users and with sets of roles. Processes
can activate and deactivate roles. A mapping between roles and users and a mapping
between read/write actions and roles control access rights. A type discipline statically
guaranties that systems not respecting the above mappings are rejected. Compagnoni
et al. define a boxed ambient calculus extended with a distributed RBAC mechanism
where each ambient controls its own access policy. A processis associated with an
owner and a set of activated roles that grant permissions formobility and communica-
tion. The calculus includes primitives to activate and deactivate roles. The behaviour
of these primitives is determined by the process’s owner, its current location and its
currently activated roles.

We discussed a model in which the pure processes are the users, the permissions
are the accesses to data in trees and the administration policies of locations prescribe
how the association between roles and data can change. Note that we do not have user
identifiers, and so we cannot activate and deactivate roles for users. Our design choice
is motivated by the focus on the interaction between processes and data trees and to the
best of our knowledge this is a first attempt in this dirrection.

Other common features of RBAC system we did not consider here, since we could
smoothly add them to the present calculus, are: incompatible roles, static and dynamic
separation of roles, limits on the number of users authorised for a given role.

Future work includes the study of both type checking and typeinference for the
present calculus. We will also compare networks using the behavioural equivalences,
extending the work in [20].

Acknowledgment.We gratefully thank the referees: the current version of thepaper
strongly improved due to referees’ useful suggestions.
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A Subject Reduction

We prove that the typing of networks is preserved by structural equivalence and by
reduction. These proofs use generation lemmas which allow the reversal of the typing
rules. We useω to range over all the types defined in Table 9.

Lemma 1 (Generation lemma for variables, locations, channels, scripts and point-
ers).

1. Γ ⊢ x : ω ⇒ x : ω ∈ Γ .
2. Γ ⊢ l : ω ⇒ ω = Loc(σ, E ,D) andT (l) = (σ, E ,D).
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3. Γ ⊢ cTv : ω ⇒ ω = Ch(Tv).
4. Γ ⊢ �Π : ω ⇒ ω = Script(σ, E ,D) andΓ ⊢ Π : ProcRole(σ, E ,D).
5. Γ ⊢ p@λ : ω ⇒ ω = Pointer(α) and Γ ⊢ p : Path(α) and Γ ⊢ λ :

Loc(σ, E ,D).

Lemma 2 (Generation lemma for paths).

1. Γ ⊢ aα : ω ⇒ ω = Path(α).
2. Γ ⊢ p1/p2 : ω ⇒ ω = Path(α) andΓ ⊢ p1 : Path(β) andΓ ⊢ p2 : Path(α).

Lemma 3 (Generation lemma for trees).

1. Γ ⊢ ∅T : ω ⇒ ω = Tree(σ, E ,D, {⊤}, {⊥,⊤}).
2. Γ ⊢ aτ [p@λ] : ω ⇒ ω = Tree(σ, E ,D, τ, τ) andΓ ⊢ p@λ : Pointer(α) and

Γ ⊢ λ : Loc(σ′, E ′,D′).
3. Γ ⊢ aτ [�Π ] : ω ⇒ ω = Tree(σ, E ,D, τ, τ) andΓ ⊢ �Π : Script(σ, E ,D).
4. Γ ⊢ aτ [T ] : ω ⇒ ω = Tree(σ, E ,D, τ, ζ) andΓ ⊢ T : Tree(σ, E ,D, τ ′, ζ′) and

τ ≦ τ ′ andτ♮ζ′ = ζ.
5. Γ ⊢ T1 | T2 : ω ⇒ ω = Tree(σ, E ,D, τ1 ∪ τ2, ζ1 ⊔ ζ2) and Γ ⊢ T1 :

Tree(σ, E ,D, τ1, ζ1) andΓ ⊢ T1 : Tree(σ, E ,D, τ2, ζ2).

Lemma 4 (Generation lemma for processes).

1. Γ ⊢ 0 : ω ⇒ ω = Proc(σ, E ,D, ρ).
2. P1 | P2 : ω ⇒ ω = Proc(σ, E ,D, ρ) andΓ ⊢ P1 : Proc(σ, E ,D, ρ) andΓ ⊢ P2 :

Proc(σ, E ,D, ρ).
3. Γ ⊢ γ̄〈v〉 : ω ⇒ ω = Proc(σ, E ,D, ρ) andΓ ⊢ γ : Ch(Tv) andΓ ⊢ v : Tv and

C(Tv) ≤ ρ.
4. Γ ⊢ γ(x).P : ω ⇒ ω = Proc(σ, E ,D, ρ) andΓ, x : Tv ⊢ P : Proc(σ, E ,D, ρ)

andΓ ⊢ γ : Ch(Tv) andC(Tv) ≤ ρ.
5. Γ ⊢!γ(x).P : ω ⇒ ω = Proc(σ, E ,D, ρ) andΓ, x : Tv ⊢ P : Proc(σ, E ,D, ρ)

andΓ ⊢ γ : Ch(Tv) andC(Tv) ≤ ρ.
6. Γ ⊢ go λ.R : ω ⇒ ω = Proc(σ′, E ′,D′, ρ) and Γ ⊢ λ : Loc(σ, E ,D) and

Γ ⊢ R : ProcRole(σ, E ,D).
7. Γ ⊢ runp : ω ⇒ ω = Proc(σ, E ,D, ρ) andΓ ⊢ p : Path(α) andα ≤ ρ.
8. Γ ⊢ readp(χ).P : ω ⇒ ω = Proc(σ, E ,D, ρ) and Γ ⊢ p : Path(α) and

Γ ∪ Γχ ⊢ P : Proc(σ, E ,D, ρ) andα ≤ ρ.
9. Γ ⊢ changep(χ, V ).P : ω ⇒ ω = Proc(σ, E ,D, ρ) andΓ ⊢ p : Path(α) andΓ ⊢

P : Proc(σ, E ,D, ρ) andα ≤ ρ and(Γ ∪ Γχ ⊢ V : Script(σ, E ,D) or Γ ∪
Γχ ⊢ V : Pointer(β) or (Γ ∪ Γχ ⊢ V : Tree(σ, E ,D, τ ′, ζ′) and α ≦

τ ′)) and (ifχ = x(σ,E,D,τ,ζ) thenζ ≤ ρ).
10. Γ ⊢ enablep(r).P : ω ⇒ ω = Proc(σ, E ,D, ρ) and Γ ⊢ p : Path(α) and

Γ ⊢ P : Proc(σ, E ,D, ρ) and(ρ, r) ∈+ E andα ≤ ρ andα ≦ {r}.
11. Γ ⊢ disablep(r).P : ω ⇒ ω = Proc(σ, E ,D, ρ) and Γ ⊢ p : Path(α) and

Γ ⊢ P : Proc(σ, E ,D, ρ) and(ρ, r) ∈− D andα ≤ ρ.

Lemma 5 (Generation lemma for processes with roles).

1. Γ ⊢ Pqρ : ω ⇒ ω = ProcRole(σ, E ,D) andΓ ⊢ P : Proc(σ, E ,D, ρ).
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2. Γ ⊢ R1 | R2 : ω ⇒ ω = ProcRole(σ, E ,D) andΓ ⊢ R1 : ProcRole(σ, E ,D)
andΓ ⊢ R2 : ProcRole(σ, E ,D).

3. Γ ⊢ (νcTv)R : ω ⇒ ω = ProcRole(σ, E ,D) andΓ ⊢ R : ProcRole(σ, E ,D).

Lemma 6 (Generation lemma for networks).

1. ⊢ l[[ T ‖ R ]] : ω ⇒ ω = Net and⊢ l : Loc(σ, E ,D) and⊢ T : Tree(σ, E ,D, τ, ζ)
and⊢ R : ProcRole(σ, E ,D).

2. ⊢ 0 : ω ⇒ ω = Net.
3. ⊢ (νcTv)N : ω ⇒ ω = Net and⊢ N : Net.
4. ⊢ N1 ‖‖ N2 : ω ⇒ ω = Net and ⊢ N1 : Net and ⊢ N2 : Net and

N (N1) ∩N (N2) = ∅.

Lemma 7 (Substitution lemma for processes and data terms).

1. If Γ, x : Tv ⊢ P : Proc(σ, E ,D, ρ) and Γ ⊢ v : Tv, thenΓ ⊢ P{v/x} :
Proc(σ, E ,D, ρ).

2. If Γ ∪ Γχ ⊢ P : Proc(σ, E ,D, ρ) and match(χ, V ), thenΓ ⊢ P{{V/|χ|}} :
Proc(σ, E ,D, ρ).

3. If Γ ∪ Γχ ⊢ �Π : Script(σ, E ,D) andmatch(χ, V ), thenΓ ⊢ �Π{{V/|χ|}} :
Script(σ, E ,D).

4. If Γ ∪ Γχ ⊢ p@λ : Pointer(α) and match(χ, V ), thenΓ ⊢ p@λ{{V/|χ|}} :
Pointer(α).

5. If Γ ∪ Γχ ⊢ T : Tree(σ, E ,D, τ, ζ) and match(χ, V ), thenΓ ⊢ T {{V/|χ|}} :
Tree(σ, E ,D, τ, ζ).

Lemma 8 (Properties of trees).

1. If ⊢ T : Tree(σ, E ,D, τ, ζ) and�R occurs inT , then⊢ R : ProcRole(σ, E ,D).
2. If ⊢ T : Tree(σ, E ,D, τ, ζ) andT ′ is the tree obtained fromT by replacing a data

term with a well-typed pointer or with a script of typeScript(σ, E ,D) from the
empty environment, then⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for someζ′.

3. If ⊢ T : Tree(σ, E ,D, τ, ζ) and T ′ is the tree obtained fromT by replacing a
data term identified by a pathp such that⊢ p : Path(α) with a treeT0 such that
⊢ T0 : Tree(σ, E ,D, τ0, ζ0) andα ≦ τ0, then⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for some
ζ′.

4. If ⊢ T : Tree(σ, E ,D, τ, ζ) and T ′ is the tree obtained fromT by replacing a
tree T0 identified by a pathp such that⊢ p : Path(α) with the tree(T0)

+r and
α ≦ {r}, then⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for someζ′.

5. If ⊢ T : Tree(σ, E ,D, τ, ζ) andT ′ is the tree obtained fromT by replacing a tree
T0 with the tree(T0)

−r, then⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for someζ′.

Proof. 1. By induction on the treeT using Lemma 3(5), (4) and (3) we get that⊢
�R : Script(σ, E ,D), so we conclude by Lemma 1(4).

2. Easy from the typing rules of trees.
3. Let aτ1 be the edge connecting the data term to his father in treeT . From⊢ p :

Path(α) and from the definition of compliance we getτ1 ≦ α. Since we as-
sumeα ≦ τ0 we deriveτ1 ≦ τ0, and this implies that we can derive the type
Tree(σ, E ,D, τ1, ζ0) for aτ1 [T0] using rule (TreeEdge). Therefore the whole tree
T ′ is typeable.
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4. Letaτ1 be as in the previous point, so that we getτ1 ≦ α, which impliesτ1 ≦ {r}.
From ⊢ T : Tree(σ, E ,D, τ, ζ) we get⊢ T0 : Tree(σ, E ,D, τ0, ζ0) for some
τ0, ζ0 such thatτ1 ≦ τ0 by Lemma 3(5) and (4). By definition of( )+r using the
typing rules (TreeEdge) and (TreeComp) we have⊢ (T0)

+r : Tree(σ, E ,D, τ0 ∪

{r}, ζ′0), whereζ′0 =

{

ζ0 ⊔ {r} if the hight ofT0 is 1,

ζ0 otherwise.
. We can derive the type

Tree(σ, E ,D, τ1, ζ0) for aτ1 [(T0)
+r] using rule (TreeEdge), since by aboveτ1 ≦

τ0 ∪ {r}.
5. The proof is similar to that of the previous point, and simpler, since by usingτ0, τ1

with the same meaning, we immediately getτ1 ≦ τ0 \\{r} from τ1 ≦ τ0 by
definition of≦.

Theorem 1 (Subject reduction) Let⊢ N : Net andN → N′, then⊢ N′ : Net.

Proof. We only consider some interesting cases.
• Rule (com):

l[[ T ‖ c̄Tv〈v〉qρ′

| cTv(x).Pqρ | R ]] → l[[ T ‖ P{v/x}qρ | R ]]

From⊢ N : Net, by Lemma 6(1), we getT (l) = (σ, E ,D), ⊢ T : Tree(σ, E ,D, τ, ζ)
and⊢ c̄Tv〈v〉qρ′

| cTv(x).Pqρ | R : ProcRole(σ, E ,D). Therefore, by Lemma 5(2)
and (1), we have⊢ c̄Tv〈v〉 : Proc(σ, E ,D, ρ′) and⊢ cTv(x).P : Proc(σ, E ,D, ρ)
and⊢ R : ProcRole(σ, E ,D). By Lemma 4(4) and (3) it follows thatx : Tv ⊢ P :
Proc(σ, E ,D, ρ) and⊢ v : Tv. Lemma 7(1) implies that⊢ P{v/x} : Proc(σ, E ,D, ρ),
which by rule (Role) gives⊢ P{v/x}qρ : ProcRole(σ, E ,D). Finally, we obtain⊢
l[[ T ‖ P{v/x}qρ | R ]] : Net by rules (ParR) and (NetLoc).
• Rule (go):

l[[ T1 ‖ go m.Rqρ | R1 ]] ‖‖ m[[ T2 ‖ R2 ]] → l[[ T1 ‖ R1 ]] ‖‖ m[[ T2 ‖ R | R2 ]]

From⊢ N : Net, by Lemma 6(4), we get that⊢ l[[ T1 ‖ go m.Rqρ | R1 ]] : Net
and⊢ m[[ T2 ‖ R2 ]] : Net. By Lemma 6(1), it follows thatT (l) = (σ, E ,D), ⊢ T1 :
Tree(σ, E ,D, τ, ζ), ⊢ go m.Rqρ : ProcRole(σ, E ,D), ⊢ R1 : ProcRole(σ, E ,D),
T (m) = (σ′, E ′,D′), ⊢ T2 : Tree(σ′, E ′,D′, τ ′, ζ′) and⊢ R2 : ProcRole(σ′, E ′,D′).
From ⊢ go m.Rqρ : ProcRole(σ, E ,D), by Lemma 5(1) we have⊢ go m.R :
Proc(σ, E ,D, ρ), which implies⊢ R : ProcRole(σ′, E ′,D′) by Lemma 4(6). Hence,
by rules (NetLoc) and (NetPar) we get⊢ l[[ T1 ‖ R1 ]] ‖‖ m[[ T2 ‖ R | R2 ]] : Net.
• Rule (run):

l[[ T ‖ runpq
ρ | R ]] → l[[ T ‖ R1 | . . . | . . . | Rn | R ]]

wherern(p, T ) = {R1, . . . , Rn}. From⊢ N : Net, by Lemma 6(1) we haveT (l) =
(σ, E ,D), ⊢ T : Tree(σ, E ,D, τ, ζ) and⊢ runpq

ρ | R : ProcRole(σ, E ,D). By
Lemma 5(2) we get⊢ R : ProcRole(σ, E ,D).Lemma 8(1) and the definition ofrn im-
ply ⊢ Ri : ProcRole(σ, E ,D) for 1 ≤ i ≤ n, from which we derive⊢ R1 | . . . | Rn :
ProcRole(σ, E ,D) using rule (ParR). We conclude by rule (NetLoc).
• Rule (read):

l[[ T ‖ readp(χ).Pqρ | R ]] → l[[ T ‖ Ps1q
ρ | . . . | Psnqρ | R ]]
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wheresub(p, χ, T ) = {s1, . . . , sn}. By definition ofsub we have thatsi = {{Vi/|χ|}}
wherematch(χ, Vi) for 1 ≤ i ≤ n. From⊢ N : Net, by Lemma 6(1) we getT (l) =
(σ, E ,D), ⊢ T : Tree(σ, E ,D, τ, ζ) and⊢ readp(χ).Pqρ | R : ProcRole(σ, E ,D).
From ⊢ readp(χ). Pqρ | R : ProcRole(σ, E ,D), by Lemma 5(2) it follows⊢
readp(χ).Pqρ : ProcRole(σ, E ,D) and⊢ R : ProcRole(σ, E ,D) and therefore by
Lemma 5(1) we have⊢ readp(χ).P : Proc(σ, E ,D, ρ). Lemma 4(8) impliesΓχ ⊢ P :
Proc(σ, E ,D, ρ). Lemma 7(2) gives⊢ Psi : Proc(σ, E ,D, ρ), which implies by rule
(Role)⊢ Psiq

ρ : ProcRole(σ, E ,D) for 1 ≤ i ≤ n. We conclude as in the previous
case using rules (ParR) and (NetLoc).
• Rule (change):

l[[ T ‖ changep(χ, V ).Pqρ | R ]] → l[[ T ′ ‖ Pqρ | R ]]

wherech(p, χ, V, T ) = T ′. By definition of ch we have thatT ′ is obtained fromT
by replacing some data termsUi (identified by the pathp and such thatmatch(χ, Ui))
with the data termsV {{Ui/|χ|}} for 1 ≤ i ≤ n. From⊢ N : Net, by Lemma 6(1)
we getT (l) = (σ, E ,D), ⊢ T : Tree(σ, E ,D, τ, ζ) and⊢ changep(χ, V ).Pqρ | R :
ProcRole(σ, E ,D).
By Lemma 5(2) we have that⊢ changep(χ, V ).Pqρ : ProcRole(σ, E ,D) and⊢ R :
ProcRole(σ, E ,D). Then Lemma 5(1) implies⊢ changep(χ, V ).P : Proc(σ, E ,D, ρ).
Lemma 4(9) givesP : Proc(σ, E ,D, ρ) and we obtain⊢ Pqρ : ProcRole(σ, E ,D) by
rule (Role). Lemma 4(9) gives also⊢ p : Path(α) and(Γχ ⊢ V : Script(σ, E ,D)
or Γχ ⊢ V : Pointer(β) or (Γχ ⊢ V : Tree(σ, E ,D, τ0, ζ0) and α ≦ τ0)).
Lemma 7(2) gives⊢ V {{Ui/|χ|}} : Script(σ, E ,D) or ⊢ V {{Ui/|χ|}} : Pointer(β) or
⊢ V {{Ui/|χ|}} : Tree(σ, E ,D, τ0, ζ0). In all cases we have⊢ T ′ : Tree(σ, E ,D, τ, ζ′)
for someζ′ by Lemma 8(2) and (3), then by rules (ParR) and (NetLoc) we conclude
l[[ T1 ‖ Pqρ | R ]] : Net.
• Rule (enable):

l[[ T ‖ enablep(r).Pqρ | R ]] → l[[ T ′ ‖ Pqρ | R ]]

whereen(p, r, T ) = T ′. By definition of en we have thatT ′ is obtained fromT by
replacing the treesTi, identified by the pathp, with the trees(Ti)

+r for 1 ≤ i ≤ n.
From⊢ N : Net, by Lemma 6(1) we getT (l) = (σ, E ,D), ⊢ T : Tree(σ, E ,D, ρ, ζ)
and⊢ enablep(r).Pqρ | R : ProcRole(σ, E ,D). Then by Lemma 5(2) we obtain
⊢ enablep(r).Pqρ : ProcRole(σ, E ,D) and⊢ R : ProcRole(σ, E ,D). Lemma 5(1)
implies⊢ enablep(r).P : Proc(σ, E ,D, ρ). From⊢ enablep(r).P : Proc(σ, E ,D, ρ),
by Lemma 4(10) we have⊢ P : Proc(σ, E ,D, ρ) and⊢ p : Path(α) andα ≦ {r}.
From⊢ P : Proc(σ, E ,D, ρ) by rule (Role) we derive⊢ Pqρ : ProcRole(σ, E ,D).
Lemma 8(4) implies⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for someζ′. Hence by rules (ParR) and
(NetLoc) we get the proof.

B Proof of Proposition 2

Proposition 2 If N is a well typed network andN _ ν(l[[ T ‖ Pqρ | R ]] ‖‖ N′),
then:



28 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jakšić, Jovanka Pantović

P0 ⊢ T : Tree(σ, E ,D, τ, ζ) for someτ, ζ and⊢ Pqρ | R : ProcRole(σ, E ,D);
P1 P ≡ c̄Tv〈v〉 implies⊢ v : Tv andC(Tv) ≤ ρ;
P2 P ≡ go l′.R implies⊢ R : ProcRole(σ′, E ′,D′) andT (l′) = (σ′, E ′,D′);
P3 P ≡ runp or P ≡ readp(x).P ′ or P ≡ changep(χ, V ).P ′ or P ≡ enablep(r).P

′

or P ≡ disablep(r).P
′ and⊢ p : Path(α) implyα ≤ ρ;

P4 P ≡ runp or P ≡ readp(x).P ′ or P ≡ changep(χ, V ).P ′ or P ≡ enablep(r).P
′

or P ≡ disablep(r).P
′ andp identifies a data termV in the treeT imply thatV

is connected to his father by an edge whose set of rolesτ is such thatτ ≤ ρ;
P5 P ≡ runp andrn(p, T ) = {R1, . . . , Rn} imply ⊢ Ri : ProcRole(σ, E ,D) for

1 ≤ i ≤ n;
P6 P ≡ readp(χ).P ′ andsub(p, χ, T ) = {s1, . . . , sn} imply⊢ Psi : Proc(σ, E ,D, ρ)

for 1 ≤ i ≤ n;
P7 P ≡ changep(x

(σ′,E′,D′,τ,ζ), V ).P ′ impliesζ ≤ ρ;
P8 P ≡ changep(χ, V ).P ′ andch(p, χ, V, T ) = T ′ imply⊢ T ′ : Tree(σ, E ,D, τ, ζ′)

for someζ′;
P9 P ≡ enablep(r).P

′ implies(ρ, r) ∈+ E ;
P10 P ≡ enablep(r).P

′ anden(p, r, T ) = T ′ imply ⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for
someζ′;

P11 P ≡ disablep(r).P
′ implies(ρ, r) ∈− D;

P12 P ≡ disablep(r).P
′ anddi(p, r, T ) = T ′ imply⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for

someζ′;

whereT (l) = (σ, E ,D).

Proof. – PointP0 follows from Theorem 1 and Lemma 6(3), (4), (1).
– For PointsP1, P2, P3, P7, P9 andP11 notice that fromP0 we get⊢ Pqρ | R :

ProcRole(σ, E ,D), which implies⊢ Pqρ : ProcRole(σ, E ,D) by Lemma 5(2)
and⊢ P : Proc(σ, E ,D, ρ) by Lemma 5(1). ThereforeP1, P2, P3, P7, P9andP11
follow from Points (3), (6), (7)-(11), (9), (10), (11) of Lemma 4, respectively.

– PointP4 easily follows fromP3 by definition of compatibility between paths and
tree paths.

– PointP5 is true by Lemma 8(1), since⊢ T : Tree(σ, E ,D, τ, ζ) and by definition
the functionrn returns processes with roles whose scripts are stored in thelocal
tree.

– In caseP6

ν(l[[ T ‖ Pqρ | R ]] ‖‖ N′) → ν(l[[ T ‖ Ps1q
ρ | . . . | Psnqρ | R ]] ‖‖ N′)

by rule (read), and this last process is typeable by Theorem 1. Therefore we con-
clude by Lemmas 6(3), (4), (1), and 5(2), (1).

– In P8we get⊢ T : Tree(σ, E ,D, τ, ζ) and⊢ changep(χ, V ).P ′ : Proc(σ, E ,D, ρ).
Lemma 4(9) gives⊢ p : Path(α) and(Γχ ⊢ V : Script(σ, E ,D) or Γχ ⊢ V :
Pointer(β) or (Γχ ⊢ V : Tree(σ, E ,D, τ0, ζ0) and α ≦ τ0)). Lemma 7(2)
gives⊢ V {{Ui/|χ|}} : Script(σ, E ,D) or ⊢ V {{Ui/|χ|}} : Pointer(β) or ⊢
V {{Ui/|χ|}} : Tree(σ, E ,D, τ0, ζ0). In all cases we get⊢ T ′ : Tree(σ, E ,D, τ, ζ′)
for someζ′ by definition of the functionch and by Lemma 8(2) and (3).
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– In P10we get⊢ T : Tree(σ, E ,D, τ, ζ) and⊢ enablep(r).P
′ : Proc(σ, E ,D, ρ).

By Lemma 4(10) we have⊢ p : Path(α) andα ≦ {r}. Lemma 8(4) and the
definition of the functionen imply ⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for someζ′.

– In P12 we get⊢ T : Tree(σ, E ,D, τ, ζ). Lemma 8(5) and the definition of the
functiondi imply ⊢ T ′ : Tree(σ, E ,D, τ, ζ′) for someζ′.


