. UNIVERSITA
= DEGLI STUDI
=" DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Types for Role-Based Access Control of Dynamic Web Data

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/97180 since
Publisher:

Springer

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

26 November 2024

UNIVERSITA DEGLI STUDI DI TORINO

Thisis an author version of the contribution published on:

Mariangiola Dezani, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic
Types for Role-Based Access Control of Dynamic Web Data
Editor: Springer
2011
ISBN: 9783642207747

WFLP 2010
1-29
WFLP 2010
Madrid
January 17th, 2010

The definitive version is available at:
http://link.springer.com/chapter/10.1007%2F978-3-642-20775-4 1

http://link.springer.com/chapter/10.1007%2F978-3-642-20775-4_1

Types for Role-Based Access Control
of Dynamic Web Data

Mariangiola Dezani-CiancaglihiSilvia Ghilezan,
Svetlana Jaksf Jovanka Pantovit

! Dipartimento di Informatica, Universita di Torino, Italy
dezani @i .unito.it
2 Faculty of Technical Sciences, University of Novi Sad, $erb
{gsi | vi a, sj aksi c, pantovi c}@ns. ac.rs

Abstract. We introduce a role-based access control calculus for riiodely-
namic web data and a corresponding type system. It is ansatenf the Xir
calculus proposed by Gardner and Maffeis.

In our framework, a network is a parallel composition of fomas, where each
location contains processes with roles and a data tree veugEs are associated
with roles. Processes can communicate, migrate from aitoctd another, use
the data, change the data and the roles in the local treeislw#y, we obtain a
model that controls process access to data.

We propose a type system which ensures that a specified tepabcey is re-
spected during computations. Finally, we show that ourutatcobeys the fol-
lowing security properties: (1) all data trees and processth roles in a location
agree with the location policy; (2) a process can migratg tmh location with
whose policy it agrees; (3) a process with roles can read asifynonly data
which are accessible to it; (4) a process with roles can eraid disable roles in
agreement with the location policy.

1 Introduction

One of the essential steps in managing distributed systaéthseami-structured data is
the security administration, which is one of the main feaéun prevention of unautho-
rized access to system resources. Role-based accesd (BRR#AL) [24] is an access
control method that relies on the notions of users, roleg@nchissions. It controls the
access of users to the system resources in accordance witictiities they have to
perform in the system. In accessing the system resourcagrdas those permissions
which are assigned to its roles. In a system, roles are aligtidefined by the organ-
isation structure, hence the security administration dgiced to the management of
permissions. This makes RBAC a simplified and desirablessccentrol technology.
With the aim of application of RBAC to peer-to-peer model efrs-structured web
data, we introduced th®Xdr calculus, a formal model for dynamic web applications
with RBAC, and proposed a type system to control its safete @Xdr calculus is a
role-based extension of thedX calculus of Gardner and Maffeis [12]. TheiX cal-
culus models process communication, and process migrasatistributedr-calculus,
and local interaction between processes and data. A neiwarbarallel composition

2 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Seeth Jaksic, Jovanka Pantovic

of locations, where each location contains a process andsati@ge. In our calculus,

by assigning roles both to data trees and processes, we @btaddel that allows role
administration (i.e. activation and deactivation). Eamtation has its policy which con-
sists of thedata accessibility policythe set of minimal roles that a process needs to have
to access the data, and th@ministration policythe sets of roles which can be enabled
or disabled at that location.

As a first contribution of this paper, in Section 2, we desighrXn a RBAC sce-
nario and extend it with commands for role administratios., ifor enabling and dis-
abling roles. More precisely, the commasthble,(r) allows the role- to access data
identified by the pathy and the commandisable,(r) forbids the roler to access
identified data.

As a second contribution of this paper, in Section 3, we psepotype system for
®Xdr and prove that a specified network policy is respected durimgputations. In
our framework, a well-typed network is a parallel compasitof well-typed locations
with different names and if a location is well typed, thentbtite enclosed tree and
process with roles do not contain occurrences of free vimsab

Our calculus is enriched with a type system assuring that:

— if a process can access an edge in a well-typed tree, themtjeei® connected to
the root of the tree by a path whose edges are all accessithlattprocess;

— only processes agreeing with the location policy can beatetil at a location and
can migrate to it;

— a process can modify a subtree only if it can access all thesdfthe subtree;

— agreeing with the location policy, a process can enableeaabén edge or disable
arole from a subtree if it can access the path which identifies

Finally, in Section 4, we prove that the type system obeysalewing security
properties:

— all data trees and processes with roles in a location agrtbeté location policy.
This holds even for processes with roles generated by rgatiite or activating
scripts and for trees obtained by changing data or actiyateactivating roles;

— a process can migrate only to a location with whose policgiieas;

— a process with roles can read and modify only data which aresatle to it;

— a process with roles can enable and disable roles in agréemitbrthe location
policy.

The main contribution of the present paper is the explicitadgic association of
roles to data in agreement with a distributed policy whichl#es resource access con-
trol.

Outline of the papein Section 2 we introduce the syntax and the reduction rules
for the ®Xdr calculus. Section 3 is devoted to its type system. Securdpegrties of
the system are stated in Section 4. The proofs are the carftére Appendix.

1.1 Anexample

As an example, we use a university campus (network) comtgilvications such as a
faculty, a classroom and a public space, represented by:

FACULTY] T || Rr] ||| CLASSROOM] Tt || Re] ||| PUBLIC[T || Re]

Types for Role-Based Access Control of Dynamic Web Data 3

where:
— FACULTY, CLASSROOM andPUBLIC are names of locations;
— |l is the operator of parallel composition of networks;
— T¢, T; andTp are trees whose labelled edges are decorated by sets ofarales
whose leaves contain data;
— Rr, Rc andRp are processes with roles;
— || is the separator between data trees and processes.

Each edge in a tree is assigned a set of roles that a procesglisaed to have in order
to access it. For example, let andprof be the roles of students and professors, re-
spectively. Let the tre@; contain the edgeonnection with role prof and let the tree
Ty contain the edgeonnection with rolesprof andst. This represents a situation
in which students can access thennection in the PUBLIC location but not in the
CLASSROOM, while professors can access ttemnection in both locations.

The set of roles is partially ordered, implying that dataemsible to processes with
lower roles are also accessible to processes with highes.rbbr example, by stating

st C prof

we get that all data accessible to students are also ackegsiprofessors. With this
order we can get the previous situation if we decorate the edgnection in the
PUBLIC location only with the rolest instead with both rolest andprof.
The location policy of£LASSRO0M can prescribe that:
— the minimal role to access datasis;
— a process with rolerof can enable and disable the releto access data.

We would represent such a policy bist}, ({prof}, st), ({prof}, st)).

A process with rolerof can enable and disable students to accessdimeection
in theCLASSROOM. A command for enabling ienable,(st), if pc is the path from the
root of the tre€l;; to the edge-onnection with role prof. After the execution of this
enabling command the trd@ will contain the edgeonnection with both rolesprof
andst. In this way the classroom policy enables professors tovaitudents to do
exercises using internet during the class.

2 @®Xd calculus: role based access control for dynamic web data

2.1 Syntax of®@Xdmw

We design a model of dynamic web data in a RBAC scenario. Guitirsg point is
the Xdr of [12] which we equip with roles. We model a peer-to-peewnek as a set
of connected locations, where each location has a policycandists of a data tree
labelled with roles and a process with roles. Processesraliéis can, as in pured,
communicate with other processes, migrate to other locatm update the local data.
A novelty is that all these actions are controlled by rolesmrdbver, processes can
administrate roles by enabling and disabling them.

4 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Seeth Jaksic, Jovanka Pantovic

Roles. We assume a countable set of ralesand user, s, t to range over elements of
R.Let(R,C)be alattice and let, T € R be its bottom and top element, respectively.
The operation of join is denoted by By «, p, o we denote non-empty sets of roles and
by 7, ¢ sets of roles containing th€é element. Each process is assigned a set of roles
and each edge in trees is assigned a set of roles contaigngalement. For the sake
of simplicity we refer to them as to processes and trees witsr respectively.

Different processes can have different sets of roles ansktime role can be assigned
to different edges and different processes.

2.1.1 Trees

T =07 empty rooted tree
| = tree variable
| T|T composition of trees, joining the roots
| a"[T] edge labelled” with subtreel’
| a7[0I] edge labelled™ with script0 11
| a"[p@)] edge labelled™ with pointerp@\

p u=a" |z |p/p

V,U==0I| pQX | T

Table 1. Syntax of treeq", pathsp and data term¥, U

The data model is an unordered edge-labelled rooteditregth leaves containing
empty treesl{r), scripts (JIT) and pointersg@\). The syntax of trees is presented in
Table 1, usinga™ to denote a tree edge with lakebnd with set of roles. We user
to denote sets of roles that contain the roleln the examples we also allow standard
data in the tree leaves.

A script!] is a static process embedded in a tree that can be activategrogess
from the same location. The symbflranges over processes with roles and variables.
A pathp identifies data in a tree. The syntax of paths is given in Taplesingp to

range over paths. In this table

— a“ is a path edge with label and with rolesy,

— x is avariable and

— / is the path composition.

A pointer, pQJ, refers to the set of data identified by the patim the tree at the
location\. The symbol\ ranges over location names and variables.

Scripts, pointers and trees are referred tdas termsor simplydata UsingU, V/
to range over data terms, their syntax is given in Table 1.

Types for Role-Based Access Control of Dynamic Web Data 5

In ®Xdr roles are employed for defining the way how a path identifiéa tlams
in a tree. A path edge® complies with a tree edge if for each role ofa there is at
least one smaller or equal roledinMore formally, let us define

Tl iff (Vsea)(Fter)tCs
Then we have that a path edg® complies with a tree edge if 7 < . In general:
Apathaf*/... /a2 complies witha tree pattaj* /... /a7 if 7, < o; forl < i <n.
Then we can define:

Definition 1. A pathidentifiesa data termV in a tree T if it complies with the tree
path from the root of " to V.

Example 1.Let L C st C st; C prof C dean [T, where i € I for some finitel,
and let the data tre@r of the locationFACULTY be parallel composition of trees,
1 € I, where

T; = service™ T Hrecords™: T} mark; | | booklet™* T} mark;]].

The pathservicetPr} /records{?f} complies with the tree patfervice{st: T}/
records{Prf. T} identifying mark; in the records. The marks in the booklet can be
identified with the patiservice!st: T} /booklet{sti},

2.1.2 Processes

At one location we can have a finite number of processes, Witrent roles, running
in parallel and possibly sharing some communication chianiée define processes
with roles by means of pure processes, by decorating pucegses with sets of roles.
The definitions of pure processes and processes with raesiatually recursive. We
useP, () to denote pure processes aRdS to denote processes with roles.

Pure processesTable 2 gives the formation rules of pure processes. Wey isgange
over channel names (decorated by value types) and varidliieprocesses that we are
concerned with are essentiallylX processes [12] to which we add commands for ad-
ministration of access rights. More precisely we considar kinds of pure processes:

— m-calculus processes [22], for modelling local communaati

— go command, for modelling process migration between locatias inDr calcu-
lus [17];

— run, read and change commands, for modelling interaction of processes with
local data. Activating the execution of scripts embeddelddal tree is done with
run. For reading (copy) the data from a tree we wsad and for changing (cut,
paste,...) atree we ustange. The last two commands are in place of thelate
command of [12];

— new commandsnable anddisable for changing permissions to access data.

6 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Seeth Jaksic, Jovanka Pantovic

Free variablesare defined as usual, taking into account that inpetid andchange
commands are binding variables.

P:=0 the nil process
| P|P parallel composition of pure processes
| 7{v) output of valuev on channely
| v(z).P input parametrised by a variahte
| v(x).P replication of an input process
| go AR migrates to locatior\, continues as the process with rol@s
| run, runs the scripts identified by path
| ready(x).P reads data identified by pathand matching withy
| change, (x,V).P changes data identified by pattand matching withy usingV’
| enable,(r).P allows roler to access data identified by path
| disable,(r).P forbids roler to access data identified by path
R:= P single pure procesB with rolesp assigned to it
| RIR parallel composition of processes with roles
| (vc™)R restriction of channel name

ve=c™ |OR |1 |p]| T
X = OgED) | y@@g(@ED) | f£Dr0)

Table 2. Syntax of pure processé, processes with roleR, valuesv and patterng

A valueis either a channel name decorated by a value type, a sciggaon name,
a path or a tree. Usingto range over values, the syntax of values is given in Table 2.

As arguments in commands for reading and changing the trekawepatterns
(ranged over by), whose syntax is given in Table 2. A pattern is:

— a script whose variable is decorated with a location poligfihed below) or

— a pointer whose path variable is decorated with a set of meswhose location
variable is decorated with its policy or

— atree variable decorated with a location policy and two sEteles.

By |x| we denote the data term obtained frqnby erasing all decorations.

Types for Role-Based Access Control of Dynamic Web Data 7

Processes with Role§ he syntax of processes with roles is given in Table 2. A pssce
with roles is obtained from a pure process by assigning afsedles p to it or as a
parallel composition of such processes. Processes wittsiflg different) roles can
share private communication channels (restriction operat

Another novelty ofR Xdr is the flexibility of data access which is due to introduc-
tion of roles. Namely, each process with at least one rolgdighan or equal to one
role in o has the permission to access the path edgd-or this reason we introduce
the relation< between sets of roles defined by:

a<pif (3sea)@rep) sCr.
Then a process with rolgscan access the edgé if o < p. More generally:
A process with roleg canaccess patha$'/.../ai~ if a; < pforl <i<mn.

Similarly a process with rolep canaccessa tree pathai'/.../aj" if 7, < p for
1 < ¢ < n. Lastly we define:

Definition 2. A process with roles caaccess data termV in a treeT" if it can access
the tree path from the root af to V.

Note that all processes with role can access all data, since the sets of roles associated
to tree edges are never empty.

Example 2.A process with rolgprof} can access the tree paths
service!®*" T} /records!P™® T} andservice!®*" T} /booklet st T}

and then it can access marks both in the records and in thergtsitbooklet, while a
process with rolg{st;} can access only marks in the booklet since it can access the
tree pathservice{s* T}/ booklet{st:T}. If we suppose that fof # j the roles

st; andst,; are unrelated, a process with the rdket;} cannot access the tree path
servicelst: T}/ booklet{st T},

2.1.3 Networks

Networks are the main syntactic features of the unty@etiix calculus. A network
N is a parallel composition||() of locations! consisting of a data treéE and a process
R, where roles are associated both to data trees and to pesc&sscesses at different
locations can share communication chanréls The syntax of networks is given in
Table 3. We usé, m to range over location namesto range over channel names and
Tv to denote a value type as defined in Table 9.

N:=0 | N[N [[[T]R] | (v"™)N

Table 3. Syntax of networks

8 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Seeth Jaksic, Jovanka Pantovic

2.1.4 Location Policies

(p,7) €t €+ 3(p',7’) € Esuch thap’ < pandr’ Cr
(p,7) €" D<= 3(p',r") € Dsuchthap’ < pandr C r’

Table 4. Definitions ofet ande .

A location policy is the triple(o, £, D), whereo is a set of roles, wheregsandD
are subsets of(p,r) : p C R, r € R}. The data accessibility policy is given by the
seto, the set of minimal roles a process is required to have tosacitee data at that
location. The administration policy is given by the othetssghich prescribe changes
of data access rights as follows™{ ande ™ are defined in Table 4):

— if (p,r) €t £, a process with roles can give the permission to (enable) the role

to access the data;

— if (p,7) €~ D, a process with roleg can take the permission from (disable) the

roler to access the data.

We introducec™ ande~ in order to:
— allow processes with higher roles to modify access right&chviprocesses with
lower roles can already modify (conditighn < p);
— allow to enable higher roles when lower roles can be enalteatdjtions’ C r);
— allow to disable lower roles when higher roles can be dighfilenditionr C /).

Definition 3. A location policy(c, £, D) is well-formed if(p, r) € EUD impliesr # T
ando < pU {r}.

The conditions for a location to be well formed require that:
— the roleT is neither enabled nor disabled: this agrees with the assomihat all
sets of roles decorating tree edges confain
— the roles involved in changing access rights can be rolesroésdges in the local
tree, i.e. they are not less than some roles.in

Example 3.The policy (o, &, Dr) Of the FACULTY, with o = {st; : i € I}, & =
{({prof}, as)}, andDr = {({dean}, st;) : i € I}, is well formed. According to this
policy:

— a student with rolest is not allowed to access any data at the location;

— a professor can give the permission to a teaching assistaudittthe records;

— the dean can forbid the studertb access some data;

— it holds that({dean}, prof) €t £.

In what follows we will consider only well-formed locatiomlicies. We assume a fixed
function7 which associates locations with their policies.

T() = (0,E,D) if (0,&,D) is the policy ofl.

Types for Role-Based Access Control of Dynamic Web Data 9

2.2 Reduction Rules

The reduction relation is the least relation on networkscivtis closed with respect to
the structural equivalence, reduction rules given in T8tdad reduction contexts given

by:

Co=—]C|IIN| (vc™)C
(trees) V=V =aV]=a’V]
(scripts) R=R =0OR=0R

(processes with rolegyc™)07 = 077

(P | Q)TP = pw | Q‘IP

v=2v = (W) =)

(ve™)(wd™)R = (vd"™) (ve™)R

" ¢ in(R) = R| (vc™)S = (vc™)(R | S)

V =V’ = change,(x,V).P" = change,(x,V’).P"
(networks) (vc™0 =0

(™) (wd™")N = (vd™") (vc™)N

¢ & in(N) = N | (v™)N' = (ve™)(N ||| N')

T=T'AR=R =I[T|R]=IT|R]

T EIT) =1 T || (ve™)R] = (we™)I[T|| R]

Table 5. Structural equivalence

The structural equivalence is the least equivalence oglatn networks that satisfies
alpha-conversion, the commutative monoid propertie§ffgr |) on trees, fo07, |)
on processes with roles and f@, |||) on networks, and the axioms of Table 5. As
usualfnis the set of free channel names occurring in a process wih oy in a tree or
in a network.

The reduction relation describes four forms of interaction

— local interaction between processes with roles (rutea) and com!));

— interaction between locations, describing migration afgesses with roles (rules
(g0) and Etay));

— local interaction between processes with roles and trezsgribing execution of
scripted processes and data manipulation (res)((read) and change));

— local interaction between processes with roles and treesridbing role adminis-
tration (rules énable) and @isable)).

10 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

The communication ruleg¢m) and com!) are from ther-calculus [22]. Processes
can communicate only if they are in the same location. Thezetwo rules for mi-
gration. Rule go) describes migration to a distinct location. The other r{geay),
describes staying at the current location.

Pr if op=|,
map(p, Or,f,op) = {(Z) if op = U
map(p, T1 | T2,f,0p) = (map(p,T1,f,0op)) op (map(p, T2, f,0p))
b7 [f(V)] if p=>b% andr < «,
map(p,b"[V].f,|) = ¢b"[map(q,V;f,[)] if p=>b"/g,andr = «,
b™[V] otherwise
f(V) if p=>b% andr < «,
map(p,b”[V],f,U) = < map(q,V,f,U) if p=b*/q,andr < «,
0 otherwise

Table 6. Definition of the functiomap(p, 7', f, op)

The reduction rulesfun), (read), (change), (enable) and @isable) use the func-
tions defined in Table 7 by means of the functiaap given in Table 6. The function
map takes as arguments a patha treeT’, a functionf and an operatasp € {|, U}. It
is defined by cases:

— if the tree is empty, then the result is the neutral elememndfp
— ifthe tree is a parallel composition of sub-trees, then ésaiit is the application of
op to the values returned by applyingp to the sub-trees;
— otherwisemap checks if the top path edge complies with the top tree edge and
e in case of compliance
« if the path is only one edge, thenap applies the functiorf to the so
identified data term, and it returns a treejif= | and the function value if
op=U;
x if the path is longer, themap is applied recursively to the so identified
data term;
e in case of noncompliance the result is the current treg i | and the empty
setifop =U.

The functionsrn, sub, ch, en anddi are obtained from the functiomap by spe-
cialisingf andop. For the first two functionsp = U and the returned values are sets,
for the remaining functionsp = | and the returned values are trees.

Forrn the functionf checks if the identified data is a script. If it is the casegttirns
the set which contains the found process, and the emptytsetvase.

For the functionssub andch we need the typed matching functiaatch which,
in order to check if a data term agrees with a pattern, reguiog only the data term to
be of the form of the three pattern shapes, respectivelyjptsa pointer, or a tree, but

Types for Role-Based Access Control of Dynamic Web Data 11

rn(p,T) = map(p, T, \v. {{R} Icf)tzejvvi]: ,U)

sub(p,x,T) = map(p, T, Av. {{v/|x|} icf)t:::vj;(g’v)’ ,U)
ch(p, x, V,T) = map(p, T, Av. {UVHUAX'} (i)ftt:n;tv:ilsl;(gX’ v),)

en(p,r,T) = map(p,T, \v.(v)*",])

di(p,»,T) = map(p, T, v.(v)™",|)

where

@) =0r (02) " = O

(1| T2) ™" = (T) " 7|(T2) ™" (T1|T2) "= (1) T(T2)T

(aT[U])JrT' — aTU{T'}[U] (T[U]) T __ aT\\{r}[(U)]

(p@)*" = pal (p@l)* = p@l

(OR)*" =0R (OR)"" =0OR

Table 7. Definitions of functionsn, sub, ch, en anddi

it requires also the data term to satisfy the type infornmagjiven by the pattern. This
means that:
(1) if the pattern is3z(7¢P), then the data term must be a script which can run at
locations with policy(c, £, D),
(2) if the pattern ig/(®)@z(>¢.P) then the data term must be a pointer in which
() the last edge of the path has the aaif roles and
(i) the policy of the location igo, £, D),
(3) if the pattern is:(*¢ P70 then the data term must be a tree
(i) which can stay at locations with polidy, £, D) and
(i) such that the union of the sets of roles associated teadpedges is and
(iif) such that a process with roles> (can access the whole tree.

These conditions are enforced by using the type assignmstas of Section 3. More
precisely the definition of thanatch function is:

(1) match(D:v(U’g’D), OR) if - R : ProcRole(o,&,D);

(2) match(y(®@z(@&P) pal)if - p : Path(a) andF [: Loc(o, £, D);

(3) match(z(*EPO T)if - T : Tree(o, &, D, 1, ().

In sub the functionf returns a substitution (denoted Ky /|x|}) if the identified
data matches the given pattern. If the data and the patterpainters, then the sub-
stitution replaces the location variable with the location the path variable with the
path. In the other case the substitution simply replacegdktern variable with the data.
More precisely we define:

- {0OR/Oz} = {R/x};

12 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

(com) [T [&™) |™(2).P" | R] —I[T || P{v/z} | R]
(com!) [T | @) |17 (2).P7 | R] — [T || ™" (2).P™ | P{v/z}7" | R]
(g) UTilgomR|R:i] Il mITsl| Rl —U[Ti | Ri] Il mITs|| R|R:]
(stay) [T |golR|R)—I[T|R|R]

ra(p,T) = {Ri,..., Ru}

(run)
T|runp,™ |R]—=IU[T||R1| ... | Ru | R]
sub(p,x,T) = {s1,...,8n}
(read)
[T | readpy(x). P | R]—=I[T| Ps1™| ... | Psn | R]
Ch(p7X,V7 T) = T/
(change) :
i Changep(x,V).Pjp |R] = I[T | P | R]
en(p7 T, T) = T/
(enable)
I[T || enable,(r).P™ | R] —I[T" || P | R]
di(p,r, T) =T
(disable)

I[T | disable,(r).P" | R] — [T | P | R]

Table 8. Reduction rules

- {pQl/yQz} = {p/y,l/x};
- A{T/z} ={T/x}.

In case of mismatch the result is the empty set.

The functionch has an extra argumeht, the data term in which the given pattern
is replaced with the identified data in case of matching betvtbe identified data and
the given pattern. More precisely, the functioim ch returns the dat&” in which the
given pattern is replaced with the identified data in case aifching, or it returns the
identified data otherwise.

Theen anddi functions use the auxiliary mappings™” and()~", respectively.
The mapping)™ adds the role to the first tree edges starting from the roots of the
subtrees identified by path if any, or does nothing otherwise. The mapping "
removes all the roles less than or equal to the rdiem all the edges in the subtrees
identified by patty, if any, or does nothing otherwise. In fact we define:

T\\{r}={ser|sZr}
The typing rules assure thatZ T, so we never get a set of roles withouias a result.

Example 4.If we are given the tree

T = records'™°" T} mark;] | booklet{®% T mark;],

Types for Role-Based Access Control of Dynamic Web Data 13

then

(T)*2s = records{as’prof’T}[mark;] | b°°klet{sn"as’T}[mark;] and

(T)~5% = records®°® T} mark;] | booklet! ™} mark).
Example 5.The value of(T)*" where
T =at=TDOR] [alss T ple T p@A]
will be the tree with the role added to the top edges:
T = alsrs2nTHOR] | alsrsen THplsa T p@a]].

If we apply the mapping) ~*2 to the obtained tre&” and if s3 C s2, while the other
roles are unrelated, we will get

(T")~*2 = alsvm T OR] | alsm T T p@)).

The processun, ¥ in rule (run) activates in parallel all the scripts identifiey the
pathyp in the local tree using the functiam.

In rule (read) the processead,(x).P " finds all the data terms identified by the
pathp in the local tree and matchingto obtain a set of substitutions using the function
sub. For all the substitutions in this set it activate®s ™.

The change processiange,(x, V).P” modifies the local tree using the function
ch. It finds the set of data terms identified by the patind matching withy. For each
data terniJ in this set the change process replaces iVEyU /| x|}

Rules gnable) and @isable) add and remove the rofestarting from the roots of
the subtrees identified by the pathThe difference is that ruleefable) only adds the
role to the edges starting from these roots, while rateséble) removes the role from
all the edges in the subtrees.

The type system of next section will assure that all path<kvbiccur in a process
with roles are accessible to that process.

Example 6.The net
N =m[at"par | P] || i[et Tt o] | 07,

where
P = read,, (y{*H@z("€P)) change, (y§{s})@x§a,5,D)’ OR).go x.enable,(r)”
and7 (1) = (o, &, D), reduces as follows:

N — malTHpltan) || P] | 1ot T THOL]) [070]
— m[a{“THOR] | go lenableye () [l [t T[T, | 0777
— m[aTHOR] [07] [1[0 T el 0] | enableys(r)*]
— m[a®THOR] | 070] [l 1[4 el O || 07]

where P’ = change, (yi{s})@xgd’g’p), OR).go l.enabley s (r) . This example
shows how by means afead andchange commands we can use the data in trees for
modifying both the processes and the trees.

14 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

3 Type Assignment for@ Xdm

In this section we introduce a type system @Xd= in order to control the commu-
nication of values, the migration of processes and the aazkeprocesses to data. In
Table 9 we introduce the syntax of types corresponding teyheactic categories from

Section 2.1.

A tree typeT'ree(c, &, D, 1,() is well formed if o < 7, meaning that each role
appearing at initial branches of the tree has to be bigger thaqual to a role from
the setr of minimal roles which is given by location policy. This catidn implies that

each edge in a well-typed tree has a set of roles which resgieetocation policy.

A process typeProc(o, &, D, p) is well formed ife < p. This requirement guar-
anties that the process has at least one role bigger thamaktecgne role belonging to

the set of minimal roles prescribed by the location policy.
In the following we will consider only well-formed types.

Loc(o,E,D)
Script(o,E,D)

Path(a)
Pointer(a)

Tree(o,E,D,T,()

Proc(o,E,D,p)

ProcRole(o, €, D)

Ch(Tw)
Net

type of locations with policyo, £, D)

type of scripts which can be activated

at locations with policy(o, £, D)

type of paths having the last edge with set of rales

type of pointers whose path is typed Byath (o)

type of trees, which can stay at locations with polfey €, D),
with initial branches asking and which can be

completely accessed by processes with at least one rgle of
type of pure processes, which can stay at locations

with policy (o, £, D) and which can be assigned rojes
type of processes with roles which can stay

at locations with policy(o, £, D)

type of channels communicating values of type

type of networks

Tv ranges ovevalue typeslefined by:
Tv ::= Ch(Tv) | Loc(o,E,D) | Seript(c,E,D) | Path(a) | Tree(o,E,D,T,¢)

An environmentl" associates variables with value types and with types ofgases

Table 9. Syntax of types and definition of value type

with roles, i.e. we define:

I':=0|Ix:Tv| Iz : ProcRole(o,E,D)

We use the environments by the standard axioms:

Lzx:Tvkxz:Tv

(Ax

1) (AX2)

I'yxz : ProcRole(o,&,D) b x : ProcRole(o,E,D)

Types for Role-Based Access Control of Dynamic Web Data 15

The typing rule for locationsses the functiof :

T()=(0,E,D)
I'+1: Loc(o,E,D)

(Loc)

3.1 Typing rules for trees

I' = II : ProcRole(o,&,D)
'+ 011 : Seript(o,E,D)
(PathEdge) I't=p1: Path(B) I'tp2: Path(a

I'~a“: Path(a) I+ pl/pz . Path(a)
I'tp: Path(e) I'+X:Loc(o,E,D)

I' - pQ@QX : Pointer(o)

(Script)

) (PathComp)

(Pointer)

(EmptyTree)
Ik @T : T?‘SS(O‘, 67 D: {T}7 {J-v T})

' p@)\ : Pointer(a)

(TreePointer)
I'+a’"[p@Q)\]: Tree(o,E,D,7,T)

I+ 011 : Seript(o,E,D)
I't+a" [0 : Tree(o,E,D, 1,7)
I'+T:Tree(o,,D,7,() 77

(TreeScript)

(TreeEdge)
I'ta’[T]: Tree(o,E,D, ,7HC)

I'tTy:Tree(o,E,D,71,(1) I'kTs:Tree(o,&,D,12,(2)
I'tTy | Ty : Tree(o,&,D, 71 UTa, (1 U ()

(TreeComp)

Table 10.Typing rules for scripts, paths, pointers and trees

Table 10 gives the typing rules for scripts, paths, poirdeistrees.

Typing rule for scriptsif a process with roleg! respects the location polidy, £, D),
then the scriptlIT respects the location polidy, £, D), too.

Typing rules for pathsA pathp is of type Path(«) if the last edge in the path has the
set of roles.

Example 7.The type of the pathervice{sti} /records{Prt} is Path({prof}).

Typing rule for pointersA pointer is of typePointer(«) if the path has typ@ath(a)
and the location is typable.
Typing rules for treesBy rule (EmptyTree), an empty tree can stay in any location,

16 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

since the relatiom < {T} holds for anyo. Due to rule (TreeScript), if a scrififl 11
respects a location policy, it can be in a leaf of the treesdations with that policy.

In a well-typed tree, by rule (TreeEdge), an edge with relean connect a parent
node with a child node of typ&ree(o, &, D, 7, () only if 7 < 7/. This assures that
a process which can access the tfeean also access the edge. Therefore, since in a
well-typed tree the tree patly'/.../al" has the property; < ... < 7,,, we can
reformulate accessibility of tree paths by processes &sfsi

A process with rolep canaccess tree pathal' /... /a7~ if 7, < p.

In the type of the conclusion, we define

TK:{T if ¢ = {1, T},

¢ otherwise

in order to get that the last set of roles guarantees thatigk®are accessible. So we
getri¢ = 7if Tisthe empty tree or’ = (= { L, T} (note that in this last case< 7/
implies L € 7) andtt¢ = ¢ otherwise.

If a process with roleg > (; can access the trég for i = 1,2, then a process
withrolesp > (UG = {rUs | r € (1 & s € (o} can access the trédg | 7. For
this reason we usg LI, in the conclusion of rule (TreeComp). Note tgf) has the
same type a%’, because U {T} = rand¢ U {L, T} = ¢ for anyr and((recall that
7, ¢ range over sets of roles containing.

Example 8.We assume that trees containing standard data in leavegpe &s ex-
pected.
If

T) = records™°s T} mark;] andTy = booklet!s% T} mark,].

we can derive:

F Ty : Tree(or, &, Dr, {prof, T}, {prof, T})and
F T : Tree(ow, &, Dr, {sti, T}, {sts, T}).

By (TreeComp), sinc€prof, T} LI {st;, T} = {prof, T}, we derive that

F Ty | Ty : Tree(oy, &, Dy, {prof, st;, T}, {prof, T}).

Since{st;, T} < {prof,st;, T} and{st,, T }g{prof, T} = {prof, T}, we conclude
by (TreeEdge) that

- service® THTY | Ty] : Tree(ow, &, De, {sts, T}, {prof, T}).

Notice that all the tree types are well formed since the oothecurrent roles ist; =
prof C T.

Types for Role-Based Access Control of Dynamic Web Data 17

3.2 Typing rules for processes

The typing rule for channels as expected

Chan
It Ch(Tw) ()

There are two type assignments for processes, one for pocegses and one for pro-
cesses with roles, given in Table 11.

Typing rules for pure processes the typing rules (In), (Out) and (Rep) we need the
notion ofcharacteristic roleof a value typel'v (notationC(7'v)) as defined below:

C(Ch(Tw)) =C(Tw) C(Script(o,&,D)) = C(Loc(c,E,D)) = {L}
C(Tree(c,E,D,7,0)) =71 C(Path(a)) = a.

Typing rules (In), (Out) and (Rep) assure that a processmidsp can communicate
only values with at least one characteristic role that is than or equal to a role in
In rules (Read) and (Change) we use the environmgmtefined by:

x : ProcRole(c,E,D) if x = Oz(e:€.D),
Iy =% x: Loc(0,E,D),y : Path(a) if x = y(®@z(@EP),
x: Tree(o,E,D,1,¢)if x = 2(0.€,D,7,0)

that assigns types to the variables of the patiern

If « is the set of roles of the last edge in a path and the path cempith a tree
path, the conditiomx < p assures that a process with rofesan access the tree path.
This condition is sufficient, since the path complies with ttee path means thatifis
the set of roles of the edge connecting the identified data i father tham < «, so
we concluder < p as required.

We replace a data term by a tree only if the tree obtained invhg is well typed.
This is checked by the conditian < 7/ in rule (Change). When we replace a subtree
(i.e. wheny = z(2€P:70) the condition < p assures that the whole subtree is
accessible to the process.

With (Enable) and (Disable) we change roles of edges. Rulalfle) assures that
the rolesp can add the role according to the location policy. Similarly, rule (Disaple
assures that the rolgscan erase the role according to the location policy. In rule
(Enable) the condition. < {r} gives a well-typed tree as a result. In rule (Disable) this
condition is not needed.

Example 9.Let the tree in th&eACULTY location be as in Example 1. A professor can
give the permission to a teaching assistant to edit the dsdwy the process

P> = enable__, . (=+;1 (a8).

The proces$» can be typed byProc(or, &k, Dr, {prof}) becausé{prof},as) € &,
i.e. it respects the location policy, and bettof andas can access the path. Similarly,
the dean can forbid the studerb access his booklet by the process

Py = disable,q,y;ceteean) (St;).

Becausé{dean}, st;) € Dr the type of P, can beProc(or, &, Dy, {dean}).

18 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

(Nil)
I'+0: Proc(o,E,D,p)

I'+ Py : Proc(o,E,D,p) I't P>: Proc(o,&,D,p)

(Par)
I'- P | P>: Proc(o,&,D,p)

I't~y:Ch(Tv) I'kFv:Tv C(Tv)<p
I' = 5(v) : Proc(o,&,D,p)

(Out)

I'~:Ch(Tv) Iz:Tvk P:Proc(o,&,D,p) C(Tv)<p
I'+~(z).P : Proc(o,E,D, p)

(In)

I't~:Ch(Tv) Iz:Tvk P:Proc(o,&,D,p) C(Tv)<p (Rep)
Rep

I' Hy(z).P : Proc(o,&,D, p)
I' - R: ProcRole(0,E,D) Ik X\: Loc(o,&,D)
I'-go AR : Proc(c’,E', D', p)

(Go)

I'p: Path(a) a<p
I' - run, : Proc(o,&,D, p)

(Run)

I'+p: Path(a) 'UIy F P: Proc(o,E,D,p) a<

p
(Read)
I' - ready(x).P : Proc(o,&,D,p)

I'+p: Path(a) I'+P: Proc(o,€,D,p) a<p

V : Seript(o,E,D) or
rur, + < V: Pointer(G) or
V:Tree(o,E,D,7",(') a7
if x =279 then¢ < p

I' - change, (x,V).P : Proc(o,&,D, p)

(Change)

I'tp: Path(a) '+ P: Proc(c,E,D,p) (p,r) €t € a<p a<{r
(Enable)

I' - enable,(r).P : Proc(o,&,D,p)
I'p: Path(a) '+ P : Proc(o,€,D,p) (p,r)€" D a<p
I' - disable,(r).P : Proc(c,&,D, p)

(Disable)

I'+ P: Proc(o,&,D,p) I' - R: ProcRole(o,E,D)

(Role) — (Res)
I'+ P : ProcRole(a,E, D) I'+ (ve" ")R : ProcRole(o,E,D)

I' = Ry : ProcRole(o,E,D) Ik Ry : ProcRole(o,&,D)
I'+ Ry | Rz : ProcRole(o, €, D)

(ParR)

Table 11.Typing rules for pure processes and processes with roles

Types for Role-Based Access Control of Dynamic Web Data 19

Typing rules for processes with roldga pure proces# is well typed for locations
with some policy and a set of roles then the process with rolg3” is well typed for
locations with the same policy.

3.3 Typing rules for networks

Fil:Loc(o,E,D) FT:Tree(c,E,D,7,{) + R: ProcRole(o,E,D)

(NetLoc)
FI[T| R]: Net
. FN: Net
———— NeNi) T (NerRes)
FO0: Net F (ve”“)N : Net

FNi:Net FNz:Net N(Ni)NN(N2)=0
FN1 ”l N2:N6t

(NetPar)

Table 12. Typing rules for networks

In typing rules for networks, given in Table 12, a locatioawell typed if it consists
of a tree and a process with roles that are well typed for lopatwith the policy ofl.
The function\ associates to a network the set of its location names:

N@©O) =0 NUITIP]D=A{} N[Nl N2) = N(N1) UN(Ny).

It is used in rule (NetPar) to assure that each location natoare at most once in a
well-typed network.

A straightforward consequence of the type assignment eukethe following prop-
erties:

Proposition 1. (i) Each location name occurs at most once in a well-typedoek.
(i) If alocation![T || R] is well typed, then both the tré€ and the process with
roles R do not contain occurrences of free variables.

The system satisfies subject reduction:

Theorem 1 (Subject reduction).Lett N : Net andN — N/, then N’ : Net.

The proof is the content of Appendix A. It uses so@enerationand Substitution
lemmas which are also presented in Appendix A.

20 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic
4 Access Control

In this section, using subject reduction, we discuss the balsed access control and
the policy maintenance of well-typed networks. More prelgisve show the following
properties.

Properties of location policies and communication:

PO All trees and processes in a location agree with the locataticy;
P1 A process with roles can communicate only values with attleas characteristic
role lower than or equal to one role of the process.

Properties of migration between locations:

P2 A process with roles can migrate to another location onlyafirees with the policy
of that location.

Properties of process access to local data trees:

P3 A process with roles looks for a path in the local tree onlyhé path is accessible
to the process.

P4 A process with roles can get a data in the local tree only itia is accessible to
the process.

Properties of manipulation of local data trees by processes

P5 A scriptis activated in a location only if the correspondgmgcess with roles agrees
with the policy of that location;
P6 A process with roles generated by a read command in a locagozes with the
policy of that location;
P7 A process with roles can erase a subtree of data only if it ca@ss the whole data;
P8 A tree built by a change command in a location agrees with tieypof that
location;
P9 A process with roles can add a role to an edge in the local tiggfahis is allowed
by the location policy;
P10 A tree built by an enable command in a location agrees withpthleey of that
location;
P11 A process with roles can erase a role from a subtree of thétigzaonly if this is
allowed by the location policy;
P12 A tree built by a disable command in a location agrees withgblicy of that
location.

In order to formalise and prove these properties, we-ug® denote the reflexive and
transitive closure of» andv to denote a possibly empty sequence of channel restric-
tions. We can then express these properties by means ofltbwifay proposition:

Proposition 2. If N is a well typed network an® — v(I[T || P | R] ||| N'),
then:

PO+ T :Tree(o,&,D,,() for somer, and- P | R : ProcRole(o, &, D);

Types for Role-Based Access Control of Dynamic Web Data 21

P1 P = &' (v) impliest v : Tv andC(Tw) < p;
P2 P =gol'.Rimpliesk R : ProcRole(o’,&',D")andT (I') = (¢, &', D");
P3 P = run, or P = read,(z).P’ or P = change,(x,V).P’ or P = enable,(r).F’
or P = disable,(r).P’ andl p : Path(a) implya < p;
P4 P = run, or P = read,(z).P’ or P = change,(x,V).P’ or P = enable,(r).P’
or P = disable,(r).P’ andp identifies a data tern¥” in the treeT” imply thatV’
is connected to his father by an edge whose set of rolesuch that < p;
P5 P = run, andrn(p,T) = {R1,...,R,} imply+ R; : ProcRole(o, &, D) for
1 <71<n;
P6 P = read,(x).P’ andsub(p, x,T) = {s1,...,sn}implyF Ps; : Proc(c,&,D,p)
forl <i<mn;
P7 P = changep(x("l’gl'pl"*o, V).P’ implies¢ < p;
P8 P = change,(x,V).P" andch(p, x, V,T) = T"imply- T" : Tree(o, €, D, 7,¢")
for some(’;
P9 P = enable,(r).P’ implies(p,r) €T &;
P10 P = enabley(r).P’ anden(p,r,T) = T imply- T" : Tree(c,E,D, 1,(’) for
some(’;
P11 P = disable,(r).P’ implies(p,r) €~ D;
P12 P = disable,(r).P’ anddi(p,r,T) = T’ imply+ 1" : Tree(o,&, D, T,¢’) for
some(’;

where7 (1) = (0,&,D).

The proof of this proposition is the content of Appendix B.

5 Related work and conclusion

RBAC has been introduced in the seventies and first fornthbyd-erraiolo and Kuhn
[10]. There is a large literature on models and implemematifor RBAC, we only
mention [24,9, 23, 11]. The standard defined in 2004 is ctiyramder revision by
the Committe CS1.1 within the International Committee fdibkmation Technologies
Standards [18].

Access control has been studied in various forms for margutiahodelling con-
current and distributed systems. Sophisticated typesating the use of resources
and the mobility of processes have been proposed fobthealculus [17, 15]. InD7
the resources are channels which support binary commiorichétween processes.
The typing system guarantees that distributed processewtaccess the resources
without first being granted the capability to do so. Processa augment their sets of
capabilities via communication with other processes. tn$afeDpi calculus [16] pa-
rameterised code may be sent between locations and typdstrée capabilities and
access rights of any processes launched by incoming codepdper [8] discusses a
type system for the % calculus based on security levels: security levels in datest
are assigned only to the data in the leaves. Co-actions hesm introduced for am-
bient calculi as a basic mechanism for regulating accessctatibns and use of their
resources [19, 5, 13]. More refined controls for ambientudainclude passwords [21,
3], classifications in groups [4, 7], mandatory access obpinlicies [2], membranes
regulating the interaction between computing bodies atereal environments [14].

22 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

The most related papers are [1] and [6]. Braghin et al. edu@ptcalculus with the
notion of user: they tag processes with names of users ahdelfis of roles. Processes
can activate and deactivate roles. A mapping between rolésisers and a mapping
between read/write actions and roles control access rightgpe discipline statically
guaranties that systems not respecting the above mappiagsjacted. Compagnoni
et al. define a boxed ambient calculus extended with a diggtbhRBAC mechanism
where each ambient controls its own access policy. A proseassociated with an
owner and a set of activated roles that grant permissionsédnility and communica-
tion. The calculus includes primitives to activate and dgate roles. The behaviour
of these primitives is determined by the process’s ownsrgilrrent location and its
currently activated roles.

We discussed a model in which the pure processes are the tiserermissions
are the accesses to data in trees and the administratiarngsodif locations prescribe
how the association between roles and data can change.idt@e do not have user
identifiers, and so we cannot activate and deactivate rolassers. Our design choice

best of our knowledge this is a first attempt in this dirreatio

Other common features of RBAC system we did not consider, lsaree we could
smoothly add them to the present calculus, are: incompatilbés, static and dynamic
separation of roles, limits on the number of users authdfisea given role.

Future work includes the study of both type checking and ipference for the
present calculus. We will also compare networks using theweural equivalences,
extending the work in [20].

Acknowledgment.We gratefully thank the referees: the current version opteer
strongly improved due to referees’ useful suggestions.

References

1. Chiara Braghin, Daniele Gorla, and Vladimiro SassonelefRased access control for a
distributed calculusJournal of Computer Security4(2):113-155, 2006.

2. Michele Bugliesi, Giuseppe Castagna, and Silvia Crafece&s control for mobile agents:
The calculus of boxed ambient&CM Transactions on Programming Languages and Sys-
tems 26(1):57-124, 2004.

3. Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vlaitio Sassone. Communication
and mobility control in boxed ambientiiformation and Computatiqr202(1):39-86, 2005.

4. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Tgp@r the ambient calculus.
Information and Computatiqrl77(2):160-194, 2002.

5. Giuseppe Castagna, Jan Vitek, and Francesco Zappa NartelSeal calculudnformation
and Computation201(1):1-54, 2005.

6. Adriana B. Compagnoni, Elsa L. Gunter, and Philippe Bidin Role-based access control
for boxed ambientsTheoretical Computer Sciencg98(1-3):203-216, 2008.

7. Mario Coppo, Mariangiola Dezani-Ciancaglini, and Elim@nnetti. Types for ambient and
process mobilityMathematical Structures in Computer Scient@:221-290, 2008.

8. Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Joka Pantovic, and Daniele Varacca.
Security types for dynamic web datalheoretical Computer Sciencd02(2-3):156-171,
2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A

Types for Role-Based Access Control of Dynamic Web Data 23

. David F. Ferraiolo, John F. Barkley, and D. Richard Kuhmoke-based access control model

and reference implementation within a corporate intraf€M Transactions on Information
and System Securjtg(1):34-64, 1999.

David F. Ferraiolo, D. Richard Kuhn, and Ravi S. Sandhble®ased access control. In
NIST-NSA National Computer Security Conferemages 554-563, 1992.

David F. Ferraiolo, Ravi S. Sandhu, Serban I. GavrilaR@hard Kuhn, and Ramaswamy
Chandramouli. Proposed NIST standard for role-based aamgrol. ACM Transactions
on Information and System Securi#y3):224-274, 2001.

Philippa Gardner and Sergio Maffeis. Modelling dynameéb data.Theoretical Computer
Science342(1):104-131, 2005.

Pablo Garralda, Eduardo Bonelli, Adriana Compagnomid aariangiola Dezani-
Ciancaglini. Boxed ambients with communication interlacMathematical Structures in
Computer Sciengel 7:1-59, 2007.

Daniele Gorla, Matthew Hennessy, and Vladimiro Sass8eeurity policies as membranes
in systems for global computingLogical Methods in Computer SciencH3:2):331353,
2005.

Matthew HennessA Distributed Pi-calculusCambridge University Press, 2007.
Matthew Hennessy, Julian Rathke, and Nobuko YoshidaDgé A language for controlling
mobile code Acta Informatica 42(4-5):227-290, 2005.

Matthew Hennessy and James Riely. Resource accessldorgystems of mobile agents.
Information and Computatiqri73(1):82—-120, 2002.

D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. ixddattributes to role-based
access controlComputer 43(6):79-81, 2010.

Francesca Levi and Davide Sangiorgi. Controlling fiet@nce in ambientsTransactions
on Programming Languages and Systefig1):1-69, 2003.

Sergio Maffeis and Philippa Gardner. Behavioural esjeivces for dynamic Web data.
Journal of Logic and Algebraic Programmin@5(1):86—138, 2008.

Massimo Merro and Matthew Hennessy. A bisimulatiorebdasemantic theory of safe am-
bients.ACM Transactions on Programming Languages and Syst28(2):290-330, 2006.
Robin Milner.Communicating and Mobile Systems: th€alculus Cambridge University
Press, 1999.

Sylvia Osborn, Ravi S. Sandhu, and Qamar Munawer. Caifiguole-based access con-
trol to enforce mandatory and discretionary access copuiities. ACM Transactions on
Information and System Securi(2):85-106, 2000.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, andl€h&. Youman. Role-based
access control model£EE Computer29(2):38—-47, 1996.

Subject Reduction

We prove that the typing of networks is preserved by strattaquivalence and by
reduction. These proofs use generation lemmas which alleweversal of the typing
rules. We usev to range over all the types defined in Table 9.

Lemma 1 (Generation lemma for variables, locations, chanrs, scripts and point-
ers).

1.
2.

I'Fz:w=z:wel.
I'l:w= w= Loc(c,€,D)andT (I) = (0,&,D).

24

3.
4.
5.

Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

I'tclw=w=Ch(Tv).

I'-0I:w= w= Script(c,€,D) andI' - II : ProcRole(o,&, D).

I' - pQX : w = w = Pointer(a) and I = p : Path(a) and I' + X :
Loc(o,E,D).

Lemma 2 (Generation lemma for paths).

1.
2.

I'a%*:w= w= Path(a).
I'p1/p2 i w=w= Path(a) andI" I p; : Path(f) and’ F ps : Path(a).

Lemma 3 (Generation lemma for trees).

1.
2.

3.
4.

5.

't Or:w=w="Tree(o,E,D,{T}{L, T}).

Itk a’[pQ) : w = w = Tree(c,E,D,r,7) andI" - pQ\ : Pointer(«) and
I'=X: Loc(o’,E", D).

I'a™[0l]:w= w="Tree(o,&,D,r,7)and " - OII : Script(c,E, D).
I'ta™[T]:w=w="Tree(o,&,D,7,¢) andI" - T : Tree(c,&,D,7',{’) and
7 < 7 andri¢’ = (.

I' =1 | T w=>w = TT‘€€(0'7(€,D,T1 U 7o, (1 |_|C2) andI” + T :
Tree(o,E,D,71,¢1) and" + Ty : Tree(o,&,D, 12, (2).

Lemma 4 (Generation lemma for processes).

10.

11.

.I'F0:w= w= Proc(c,&,D,p).
. P | Py:w=w= Proc(c,E,D,p)andl' + Py : Proc(c,&,D,p) andl" - P» :

Proc(o,E,D, p).

. I'F () : w= w = Proc(o,€,D,p)andl" -~ : Ch(Tv)andI' F v : Tv and

C(Tw) < p.

.I'F~().P:w=w= Proc(o,E,D,p)andl,xz : Tv+ P : Proc(c,E,D,p)

(
andl" + v : Ch(Tv) andC(Tv) < p.
(

. I'HFy(x).P: w = w = Proc(c,E,D,p) and I,z : Tv+ P : Proc(c,E,D,p)

andl" + v : Ch(Tv) andC(Tv) < p.

.I'+go AR : w = w = Proc(c’,&",D',p)andI" - X : Loc(c,&,D) and

I'+ R: ProcRole(o,&,D).

. I'Frun, : w = w = Proc(c,&,D,p) andI" I p : Path(ce) anda < p.
. I' F read,(x).P : w = w = Proc(c,€,D,p) andI" + p : Path(a) and

I'yIyF P: Proc(o,&,D,p) anda < p.

. I' - change (x, V).P : w = w = Proc(o,&,D,p)andl" - p : Path(a) andI"

P : Proc(o,€,D,p)anda < pand(I" U I, F V : Script(c,E,D)or ' U
I BV : Pointer(3) or(I’UI, F V : Tree(o,E,D,7",{')and a <
7)) and (ify = z(7P7¢) then¢ < p).

I' F enable,(r).P : w = w = Proc(c,&,D,p) andI" F p : Path(a) and
I't P: Proc(o,E,D,p)and(p,r) €T £ anda < panda < {r}.

I' - disable,(r).P : w = w = Proc(o,&,D,p) andI" + p : Path(«) and
I'E P: Proc(o,&,D,p)and(p,r) €~ Danda < p.

Lemma 5 (Generation lemma for processes with roles).

1.

I'+ P :w = w= ProcRole(c,£,D) andI" + P : Proc(c,&,D,p).

Types for Role-Based Access Control of Dynamic Web Data 25

2.'+ Ry | Ry : w = w = ProcRole(c,E,D) andI" - Ry : ProcRole(o,&,D)
andI' + Ry : ProcRole(o,&,D).
3. 't (ve™)R : w = w = ProcRole(o,E,D) andI" + R : ProcRole(a, £, D).

Lemma 6 (Generation lemma for networks).

LFEIT|R]:w=w=Netand-1: Loc(c,E,D)and- T : Tree(c,E, D, ,()
andr R : ProcRole(o,&,D).

2.F0:w=w= Net.

3. F (ve™)N:w = w= Netand- N : Net.

4.+ Ny || Nz:w = w = Netand N; : Net and- Ny : Net and
N(N1) NN (Ny) = 0.

Lemma 7 (Substitution lemma for processes and data terms).

1. e : Tvk P : Proc(o,E,D,p)and " - v : Tw, thenI" + P{v/z} :
Proc(o,E,D, p).

2. frJI, v P : Proc(o,&,D,p) andmatch(x,V), thenI’ = P{V/|x|} :
Proc(o,E,D, p).

3. frur, k0O : Seript(o,E,D) andmatch(x, V), thenI” - OIT{V/|x|} :
Seript(o, &, D).

4. If "' U T, F p@QX : Pointer(a) andmatch(y, V), then” F p@A{V/|x|} :
Pointer(«).

5. frurly - T: Tree(o,&,D,7,¢) andmatch(x, V), thenl - T{V/|x|} :
Tree(o,&,D,,().

Lemma 8 (Properties of trees).

1. IfET : Tree(o,&,D,,¢) anddR occurs inT', then+ R : ProcRole(o, &, D).

2. IfE T :Tree(o,&,D,1,¢) andT’ is the tree obtained froff by replacing a data
term with a well-typed pointer or with a script of tyggript(o, £, D) from the
empty environment, thenT” : Tree(o, &, D, ,(’) for some(’.

3. If= T : Tree(s,&,D,1,() andT" is the tree obtained frori’ by replacing a
data term identified by a path such that- p : Path(«) with a treeT, such that
FTo: Tree(o,&,D,19,¢) anda < 1, then- T’ : Tree(o, &, D, 1,¢’) for some
¢

4. If= T : Tree(o,&,D,7,¢) and T’ is the tree obtained frorfi’ by replacing a
tree Ty identified by a pathp such that- p : Path(a) with the tree(Ty)*" and
a < {r}, thentT": Tree(s,&,D, 1,(’) for somel’.

5. If-T: Tree(c,E,D,1,¢) andT” is the tree obtained frorii’ by replacing a tree
Tp with the tree(Ty) ", then- T : T'ree(o, &, D, 7,¢’) for some(’.

Proof. 1. By induction on the tre& using Lemma 3(5), (4) and (3) we get that
OR : Script(o, €, D), so we conclude by Lemma 1(4).

2. Easy from the typing rules of trees.

3. Leta™ be the edge connecting the data term to his father infreeromt p :
Path(a) and from the definition of compliance we get < «. Since we as-
sumea < 13 we deriver; < 79, and this implies that we can derive the type

Tree(o,E,D, 1, (o) for a™[Tp] using rule (TreeEdge). Therefore the whole tree
T’ is typeable.

26 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

4. Leta™ be as in the previous point, so that we get€ «, which impliesr; < {r}.
Fromt T : Tree(o,&,D,1,() we getk Ty : Tree(o,E,D,19,(y) for some
7o, (o such thatr; < 75 by Lemma 3(5) and (4). By definition ¢f)*" using the
typing rules (TreeEdge) and (TreeComp) we hav€ly)™" : Tree(o, &, D, 79 U
{r},}), where¢, — Gu{r} ifthe hi_ght ofTyis1,

Co otherwise
Tree(o,E,D, 11, (o) for a™[(Ty)*"] using rule (TreeEdge), since by aboxe<
To U {T}

5. The proof is similar to that of the previous point, and dienpsince by usingyg, 7,
with the same meaning, we immediately get < 7 \\{r} from =, < 7, by
definition of <.

. We can derive the type

Theorem 1 (Subject reduction) Lett N : Net andN — N/, then N’ : Net.

Proof. We only consider some interesting cases.
e Rule (com):

T ™)™ | ™(@).P* |R] — [T P{v/z}"|R]

Fromk N : Net, by Lemma 6(1), we geT (1) = (0,&,D), F T : Tree(o,&,D,T,()
and- &7 (v) 7" | ¢TV(z).P7" | R : ProcRole(o,&, D). Therefore, by Lemma 5(2)
and (1), we have- ¢ (v) : Proc(o,&,D,p') andr ¢¥(z).P : Proc(o,&,D,p)
and- R : ProcRole(o,&,D). By Lemma 4(4) and (3) it follows that : Tv - P :
Proc(o,&,D, p)and- v : Tv. Lemma 7(1) implies that P{v/x} : Proc(o, &, D, p),
which by rule (Role) gives P{v/xz}7" : ProcRole(o,&, D). Finally, we obtain-
I[T || P{v/z}" | R] : Net by rules (ParR) and (NetLoc).

¢ Rule (go):

T [[gom B[R] [l m[Tz [B2] — [Tyl Ba] I m[To | R Re]

Fromk N : Net, by Lemma 6(4), we get that [[Ty || go m.R™" | Ry] : Net
and- m[T || R2] : Net. By Lemma 6(1), it follows tha (1) = (0,&,D), F T1 :
Tree(o,E,D,T,(), - go m.R"” : ProcRole(c,E,D), - Ry : ProcRole(o,&,D),
T(m)=(0/,E,D),FTy: Tree(c’',E',D',7",{’") and- Ry : ProcRole(c’,E',D").
Fromk go m.R : ProcRole(o,&,D), by Lemma 5(1) we have go m.R :
Proc(o,&,D, p), which implies- R : ProcRole(o’,E',D') by Lemma 4(6). Hence,
by rules (NetLoc) and (NetPar)we get[71 || Ri] || m[T2 || R| Rz2] : Net.

e Rule (run):

[T run,”|R] — IUT|Ri|...|...|Ra|R]

wherern(p,T) = {Ry, ..., R,}. Fromk N : Net, by Lemma 6(1) we hav& (I) =
(0,€,D), F T : Tree(o,E,D,7,¢) and- run,™ | R : ProcRole(c,E,D). By
Lemma 5(2) we gét R : ProcRole(o,E,D).Lemma 8(1) and the definition ek im-
ply F R; : ProcRole(a,E,D) for 1 <i < n, from which we derive- Ry | ... | R, :
ProcRole(o, £, D) using rule (ParR). We conclude by rule (NetLoc).

e Rule (read):

[T | ready(x).P"”|R] — I[T|Ps1™]|...|Psp”|R]

Types for Role-Based Access Control of Dynamic Web Data 27

wheresub(p, x,T) = {s1, .. ., s, }. By definition ofsub we have thas; = {V;/|x|}
wherematch(y, V;) for1 <4 < n. Fromk N : Net, by Lemma 6(1) we gef (1) =
(0,€,D), T : Tree(o,E,D, 1,¢) and read,(x).P"” | R : ProcRole(o, &, D).
Fromk read,(x). P | R : ProcRole(o,&,D), by Lemma 5(2) it follows+
read,(x).P” : ProcRole(o,&,D) and- R : ProcRole(o, £, D) and therefore by
Lemma 5(1) we have read,(x).P : Proc(o,&,D, p). Lemma 4(8) implied’, - P :
Proc(o,E,D, p). Lemma 7(2) give$- Ps; : Proc(o, &, D, p), which implies by rule
(Role)F Ps; % : ProcRole(o,&,D) for 1 < i < n. We conclude as in the previous
case using rules (ParR) and (NetLoc).

¢ Rule (change):

[T | change,(x,V).P"|R] — I[T"|P™|R]

wherech(p, x, V,T) = T’. By definition of ch we have thafl” is obtained froml’

by replacing some data term5 (identified by the patly and such thatatch(x, U;))

with the data term&{U,/|x|}} for 1 < ¢ < n. Fromt N : Net, by Lemma 6(1)
we get7 (I) = (0,&,D), = T : Tree(o,&,D, 1,() and- change, (x,V).P" | R :

ProcRole(o,&,D).

By Lemma 5(2) we have that change,(x, V).P"” : ProcRole(o,&,D) andt R :

ProcRole(o, &, D). Then Lemma 5(1) impliels change,,(x, V).P : Proc(o, €, D, p).

Lemma 4(9) give? : Proc(o, &, D, p) and we obtait- P77 : ProcRole(o, &, D) by

rule (Role). Lemma 4(9) gives also p : Path(«) and(l, = V : Script(o,E,D)

orIy, F V : Pointer(8) or(Iy -V : Tree(o,&,D,1,¢)and a = m)).

Lemma 7(2) gives V{U,/|x|} : Script(o,E,D) or = V{U,/|x|} : Pointer(3) or

FV{U:/|x|} : Tree(o,&,D,10,¢). In all cases we have T : Tree(c,&,D,,(’)

for some(¢’ by Lemma 8(2) and (3), then by rules (ParR) and (NetLoc) weclcmte
IITy || P"" | R] : Net.

e Rule (enable):

I[T | enabley(r).P™ |R] — I[T"| P |R]

whereen(p,r,T) = T’. By definition of en we have thafl”’ is obtained froml" by
replacing the tree¥}, identified by the patlp, with the treeqT;)*™" for 1 < i < n.
From N : Net, by Lemma 6(1) we get (1) = (0,&,D), - T : Tree(o,E,D, p, ()
andk enabley(r).P" | R : ProcRole(c,E,D). Then by Lemma 5(2) we obtain
F enable,(r).P” : ProcRole(o,&,D) and- R : ProcRole(o, &, D). Lemma 5(1)
impliest- enable,(r).P : Proc(o,&, D, p). Fromk enable,(r).P : Proc(o,&, D, p),
by Lemma 4(10) we have P : Proc(c,&,D,p) andt p : Path(a) anda < {r}.
Fromb P : Proc(c,&,D,p) by rule (Role) we derive- P : ProcRole(o,E, D).
Lemma 8(4) implies- T : Tree(o, &, D, 7, (') for some(’. Hence by rules (ParR) and
(NetLoc) we get the proof.

B Proof of Proposition 2

Proposition 2 If N is a well typed network an® — v(I[T || P* | R] || N'),
then:

28 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Saea Jaksi¢, Jovanka Pantovic

PO+ T : Tree(o,&,D, () for somer, and- P | R : ProcRole(o, &, D);
P1 P = &' (v) impliesk v : Tv andC(Tw) < p;
P2 P =gol'’.Rimpliesk R : ProcRole(c’,&',D')andT (I') = (¢, &', D');
P3 P = run, or P = read,(v).P’ or P = change,(x, V).P’ or P = enable,(r).P”’
or P = disable,(r).P’ andr p : Path(a) implya < p;
P4 P = run, or P = read,(v).P’ or P = change,(x,V).P’ or P = enable,(r).P”’
or P = disable,(r).P’ andp identifies a data tern¥" in the treeT" imply thatV’
is connected to his father by an edge whose set of rolesuch that < p;
P5 P = run, andrn(p,T) = {R1,...,R,} imply+ R; : ProcRole(o, &, D) for
1 <71<n;
P6 P = read,(x).P’ andsub(p, x,T) = {s1,...,sn}implyF Ps; : Proc(c,&,D,p)
forl <i<mn;
P7 P = changep(x(“/’g/’p/’ﬂo, V).P" implies¢ < p;
P8 P = change,(x,V).P" andch(p, x,V,T) = T"implyt T" : Tree(o, &, D, 7,(’)
for some(’;
P9 P = enable,(r).P’ implies(p,r) €T &;
P10 P = enabley(r).P’ anden(p,r,T) = T imply- T’ : Tree(o,&,D, 1,(’) for
some(’;
P11 P = disable,(r).P’ implies(p,r) €~ D;
P12 P = disabley(r).P’ anddi(p,r,T) = T" implyt 1" : Tree(o, &, D, 1,¢’) for
some(’;

where7 (1) = (0,&,D).

Proof. — PointP0Ofollows from Theorem 1 and Lemma 6(3), (4), (1).

— For PointsP1, P2, P3, P7, P9 andP11 notice that fromPOwe get- P77 | R :
ProcRole(o, £, D), which impliesk- P : ProcRole(o,&,D) by Lemma 5(2)
and- P : Proc(o, &, D, p) by Lemma 5(1). Thereforiel, P2, P3, P7, P9andP11
follow from Points (3), (6), (7)-(11), (9), (10), (11) of Lema 4, respectively.

— PointP4 easily follows fromP3 by definition of compatibility between paths and
tree paths.

— PointP5is true by Lemma 8(1), sinde T : Tree(o, &, D, 7,¢) and by definition
the functionrn returns processes with roles whose scripts are stored ilotiad
tree.

— In caseP6

v(IL T PYIRT Il N)—v([T Ps:™| ... [Psp,™[R] Il N)

by rule (read), and this last process is typeable by Theorehmdrefore we con-
clude by Lemmas 6(3), (4), (1), and 5(2), (1).

— InP8we get- T': T'ree(o, €, D, 7,¢) andt- change,(x, V).P’ : Proc(o, &, D, p).
Lemma 4(9) gives$- p : Path(a) and(l = V : Script(o,€,D)orly - V :
Pointer(8) or(Iy =V : Tree(o,&,D,1,()and a < 79)). Lemma 7(2)
givesk V{U;/|x|} : Script(c,E,D)or = V{U;/|x|} : Pointer(8) or
V{U:/Ix|} : Tree(o,&,D,10,¢). In all cases we gét T’ : Tree(o,E, D, 7,(’)
for some(’ by definition of the functiorch and by Lemma 8(2) and (3).

Types for Role-Based Access Control of Dynamic Web Data 29

— In P10we get- T': T'ree(o, &, D, 7,¢) andr enable,(r).P’ : Proc(o,&,D, p).
By Lemma 4(10) we have p : Path(a) anda £ {r}. Lemma 8(4) and the
definition of the functioren imply - 7" : T'ree(o, &, D, T,¢’) for some(’.

— In P12we get- T : Tree(o,&,D,1,¢). Lemma 8(5) and the definition of the
functiondi imply = T7 : Tree(o, &, D, 1,¢") for some(’.

