Emissions of methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O) and ammonia (NH3) during the storage of rough pig slurry and the fractions (solid and liquid) obtained by mechanical separation were investigated in a laboratory-scale study. Manures were stored for a period of 30 days in open vessels (1500 cm3 capacity) within a climate controlled room which was kept at 25±0.2◦C. Gaseous emissions were determined with the dynamic chamber method by infrared photoacoustic detection. The main GHG emission from the liquid manures was CH4. CH4 losses from both liquid and solid fractions together were 3% higher than from the rough slurry. CO2 losses from both liquid and solid fractions together increased by 10% compared with rough pig slurry. Appreciable N2O fluxes were only measured from the solid fraction. Combining the losses during the storage of both liquid and solid fraction, they resulted in reduced NH3 emissions compared with the storage of the rough pig slurry. Evidence from the present study suggests that mechanical separation of pig slurry has the potential to increase up to 25% the emission of CO2-equivalents to the atmosphere during the storage of the separated fractions if compared with the rough slurry.

GHG emissions during the storage of rough pig slurry and the fraction obtanined by mechanical separation

DINUCCIO, Elio;BALSARI, Paolo;
2008-01-01

Abstract

Emissions of methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O) and ammonia (NH3) during the storage of rough pig slurry and the fractions (solid and liquid) obtained by mechanical separation were investigated in a laboratory-scale study. Manures were stored for a period of 30 days in open vessels (1500 cm3 capacity) within a climate controlled room which was kept at 25±0.2◦C. Gaseous emissions were determined with the dynamic chamber method by infrared photoacoustic detection. The main GHG emission from the liquid manures was CH4. CH4 losses from both liquid and solid fractions together were 3% higher than from the rough slurry. CO2 losses from both liquid and solid fractions together increased by 10% compared with rough pig slurry. Appreciable N2O fluxes were only measured from the solid fraction. Combining the losses during the storage of both liquid and solid fraction, they resulted in reduced NH3 emissions compared with the storage of the rough pig slurry. Evidence from the present study suggests that mechanical separation of pig slurry has the potential to increase up to 25% the emission of CO2-equivalents to the atmosphere during the storage of the separated fractions if compared with the rough slurry.
2008
48
93
95
GHG emission; pig slurry; mechanical separation
E. DINUCCIO; P. BALSARI; W. BERG
File in questo prodotto:
File Dimensione Formato  
GHG_australian.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 420.09 kB
Formato Adobe PDF
420.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/100311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact