We recently showed that arachidonic acid (AA) triggers calcium signals in endothelial cells derived from human breast carcinoma (B-TEC). In particular, AA-dependent Ca(2+) entry is involved in the early steps of tumor angiogenesis in vitro. Here, we investigated the multiple roles of the nitric oxide (NO) and cyclic AMP/protein kinase A (PKA) pathways in AA-mediated Ca(2+) signaling in the same cells. B-TEC stimulation with 5 μmol/L AA resulted in endothelial NO synthase (NOS) phosphorylation at Ser(1177), and NO release was measured with the fluorescent NO-sensitive probe DAR4M-AM. PKA inhibition by the use of the membrane-permeable PKA inhibitory peptide myristoylated PKI(14-22) completely prevented both AA- and NO-induced calcium entry and abolished B-TEC migration promoted by AA. AA-dependent calcium entry and cell migration were significantly affected by both the NOS inhibitor N(G)-nitro-l-arginine methyl ester and the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, suggesting that NO release is functionally involved in the signaling dependent on AA. Moreover, pretreatment with carboxyamidotriazole, an antiangiogenic compound that interferes with agonist-activated calcium entry, prevented AA-dependent B-TEC motility. Interestingly, even in the absence of AA, enhancement of the cyclic AMP/PKA pathway with the adenylyl cyclase activator forskolin evoked a calcium entry dependent on NOS recruitment and NO release. The functional relevance of AA-induced calcium entry could be restricted to tumor-derived endothelial cells (EC) because AA evoked a smaller calcium entry in normal human microvascular ECs compared with B-TECs, and even more importantly, it was unable to promote cell motility in wound healing assay. This evidence opens an intriguing opportunity for differential pharmacologic treatment between normal and tumor-derived human ECs.

MULTIPLE ROLES OF PROTEIN KINASE A ON ARACHIDONIC ACID-MEDIATED CA2+ ENTRY AND TUMOR-DERIVED HUMAN ENDOTHELIAL CELLS MIGRATION

FIORIO PLA, ALESSANDRA;GENOVA, TULLIO;PUPO, EMANUELA;Armando Genazzani;MUNARON, Luca Maria
2010-01-01

Abstract

We recently showed that arachidonic acid (AA) triggers calcium signals in endothelial cells derived from human breast carcinoma (B-TEC). In particular, AA-dependent Ca(2+) entry is involved in the early steps of tumor angiogenesis in vitro. Here, we investigated the multiple roles of the nitric oxide (NO) and cyclic AMP/protein kinase A (PKA) pathways in AA-mediated Ca(2+) signaling in the same cells. B-TEC stimulation with 5 μmol/L AA resulted in endothelial NO synthase (NOS) phosphorylation at Ser(1177), and NO release was measured with the fluorescent NO-sensitive probe DAR4M-AM. PKA inhibition by the use of the membrane-permeable PKA inhibitory peptide myristoylated PKI(14-22) completely prevented both AA- and NO-induced calcium entry and abolished B-TEC migration promoted by AA. AA-dependent calcium entry and cell migration were significantly affected by both the NOS inhibitor N(G)-nitro-l-arginine methyl ester and the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, suggesting that NO release is functionally involved in the signaling dependent on AA. Moreover, pretreatment with carboxyamidotriazole, an antiangiogenic compound that interferes with agonist-activated calcium entry, prevented AA-dependent B-TEC motility. Interestingly, even in the absence of AA, enhancement of the cyclic AMP/PKA pathway with the adenylyl cyclase activator forskolin evoked a calcium entry dependent on NOS recruitment and NO release. The functional relevance of AA-induced calcium entry could be restricted to tumor-derived endothelial cells (EC) because AA evoked a smaller calcium entry in normal human microvascular ECs compared with B-TECs, and even more importantly, it was unable to promote cell motility in wound healing assay. This evidence opens an intriguing opportunity for differential pharmacologic treatment between normal and tumor-derived human ECs.
2010
8
11
1466
1476
Alessandra Fiorio Pla; Tullio Genova; Emanuela Pupo; Cristiana Tomatis; Armando Genazzani; Roberta Zaninetti; Luca Munaron
File in questo prodotto:
File Dimensione Formato  
Mol Cancer Res 2010 Fiorio Pla.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 911.45 kB
Formato Adobe PDF
911.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/100619
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact