Several peptides, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), activate the release of arachidonic acid (AA) and nitric oxide (NO) in endothelial cells (ECs). Both messengers are involved in EC proliferation and vascular permeability and control calcium homeostasis in different ways. Interestingly, it has been recently suggested that NO acts as a downstream mediator of AA-induced calcium entry in smooth muscle cells and isolated mouse parotid cells. In this paper, we have investigated the complex relationships that link intracellular calcium, AA, and NO in cultured endothelial cells. Using different experimental approaches, mainly simultaneous Ca2+ and NO fluorimetric confocal imaging, we provide evidence for a complex pathway leading to noncapacitative calcium entry (NCCE) in bovine aortic endothelial cells (BAECs). In particular, AA is able to induce NCCE through two different pathways: one dependent on eNOS recruitment and NO release, the other NO-independent. Finally, we show that NO increase is involved in the control of BAEC proliferation.

REGULATION OF NON-CAPACITATIVE CALCIUM ENTRY BY ARACHIDONIC ACID AND NITRIC OXIDE IN ENDOTHELIAL CELLS

ANTONIOTTI, Susanna;LOVISOLO, Davide;MUNARON, Luca Maria
2005-01-01

Abstract

Several peptides, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), activate the release of arachidonic acid (AA) and nitric oxide (NO) in endothelial cells (ECs). Both messengers are involved in EC proliferation and vascular permeability and control calcium homeostasis in different ways. Interestingly, it has been recently suggested that NO acts as a downstream mediator of AA-induced calcium entry in smooth muscle cells and isolated mouse parotid cells. In this paper, we have investigated the complex relationships that link intracellular calcium, AA, and NO in cultured endothelial cells. Using different experimental approaches, mainly simultaneous Ca2+ and NO fluorimetric confocal imaging, we provide evidence for a complex pathway leading to noncapacitative calcium entry (NCCE) in bovine aortic endothelial cells (BAECs). In particular, AA is able to induce NCCE through two different pathways: one dependent on eNOS recruitment and NO release, the other NO-independent. Finally, we show that NO increase is involved in the control of BAEC proliferation.
2005
19
2075
2097
A. MOTTOLA; S. ANTONIOTTI; D. LOVISOLO; L. MUNARON
File in questo prodotto:
File Dimensione Formato  
FASEB J 2005 Mottola.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/100662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 34
social impact