Intracellular calcium signals activated by growth factors in endothelial cells during angiogenesis regulate cytosolic and nuclear events involved in survival, proliferation and motility. Among the intracellular messengers released after proangiogenic stimulation (bFGF, VEGF), arachidonic acid (AA), nitric oxide (NO) and their metabolites play a key role and their effects are strictly related to calcium homeostasis. Recently, we showed that AA and NO are able to stimulate the opening of store-independent calcium-permeable channels in the plasmamembrane of bovine aortic endothelial cells (BAECs). Here, we studied the intracellular spatiotemporal dynamics of AA- and NO-induced calcium increases following store-independent calcium entry from extracellular medium. Using confocal calcium imaging, we show that calcium entry is preferentially restricted to peripheral cytosolic microdomains and does not necessarily invade the nuclear region. These results support the existence of local mitogen-activated calcium signals. Several factors could account for this spatial restriction, including the geometry of the cells and the clusterization of calcium channels and other signalling molecules. Intracellular calcium fingerprints could contribute to the specificity of endothelial cell responses to angiogenic factors.

Cytosolic calcium microdomains by arachidonic acid and nitric oxide in endothelial cells

FIORIO PLA, ALESSANDRA;MUNARON, Luca Maria
2007

Abstract

Intracellular calcium signals activated by growth factors in endothelial cells during angiogenesis regulate cytosolic and nuclear events involved in survival, proliferation and motility. Among the intracellular messengers released after proangiogenic stimulation (bFGF, VEGF), arachidonic acid (AA), nitric oxide (NO) and their metabolites play a key role and their effects are strictly related to calcium homeostasis. Recently, we showed that AA and NO are able to stimulate the opening of store-independent calcium-permeable channels in the plasmamembrane of bovine aortic endothelial cells (BAECs). Here, we studied the intracellular spatiotemporal dynamics of AA- and NO-induced calcium increases following store-independent calcium entry from extracellular medium. Using confocal calcium imaging, we show that calcium entry is preferentially restricted to peripheral cytosolic microdomains and does not necessarily invade the nuclear region. These results support the existence of local mitogen-activated calcium signals. Several factors could account for this spatial restriction, including the geometry of the cells and the clusterization of calcium channels and other signalling molecules. Intracellular calcium fingerprints could contribute to the specificity of endothelial cell responses to angiogenic factors.
41(3)
261
269
TOMATIS C; FIORIO PLA A; L. MUNARON
File in questo prodotto:
File Dimensione Formato  
Cell Calcium 2007 Tomatis.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 989.18 kB
Formato Adobe PDF
989.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/100713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact