Many theories have been advanced to account for the ageing process, among which the free radical theory deserves much attention. Numerous studies have also shown an association between tissue fibrosis and oxidative stress. Of note, fibrosis may be considered a significant index of tissue ageing. Calorie restriction (CR) has been demonstrated to maintain many physiological processes in a youthful state until a very advanced age. However the anti-ageing mechanisms of CR are still not fully understood. We thus evaluated the effect of CR on oxidative damage and its relationship with fibrosis during ageing. We found a significant increase of both oxidative stress and fibrosis parameters in the aortae from aged vs. young rats. CR reversed both phenomena. CR also protected against the age-associated increase of Jun-N-terminal kinase and p-38 activities, involved in TGFbeta1 expression and signaling. On the contrary, extracellular regulated kinases did not show any age-related change. CR similarly reversed the age-related increase of AP-1 DNA binding activity and the AP-1-dependent increase of vimentin gene expression. In parallel, CR reversed the age-related morphological alterations of the aorta wall cell composition. These data further support the relationship between oxidative stress and fibrosis in different diseases and during ageing. The protection exerted by CR against fibrosclerosis might be due to a decrease of oxidative stress, with consequent decreased MAPK activity and down-regulation of AP-1 activation and of TGFbeta1 expression and signaling.

Calorie restriction protects against age-related rat aorta sclerosis

BIASI, Fiorella;SAPINO, Anna;LEONARDUZZI, Gabriella Marisa;POLI, Giuseppe;CHIARPOTTO, Elena Maria
2005-01-01

Abstract

Many theories have been advanced to account for the ageing process, among which the free radical theory deserves much attention. Numerous studies have also shown an association between tissue fibrosis and oxidative stress. Of note, fibrosis may be considered a significant index of tissue ageing. Calorie restriction (CR) has been demonstrated to maintain many physiological processes in a youthful state until a very advanced age. However the anti-ageing mechanisms of CR are still not fully understood. We thus evaluated the effect of CR on oxidative damage and its relationship with fibrosis during ageing. We found a significant increase of both oxidative stress and fibrosis parameters in the aortae from aged vs. young rats. CR reversed both phenomena. CR also protected against the age-associated increase of Jun-N-terminal kinase and p-38 activities, involved in TGFbeta1 expression and signaling. On the contrary, extracellular regulated kinases did not show any age-related change. CR similarly reversed the age-related increase of AP-1 DNA binding activity and the AP-1-dependent increase of vimentin gene expression. In parallel, CR reversed the age-related morphological alterations of the aorta wall cell composition. These data further support the relationship between oxidative stress and fibrosis in different diseases and during ageing. The protection exerted by CR against fibrosclerosis might be due to a decrease of oxidative stress, with consequent decreased MAPK activity and down-regulation of AP-1 activation and of TGFbeta1 expression and signaling.
2005
19
1863
1865
TGFβ1; ageing; MAPK; oxidative stress; aortic fibrosclerosis
CASTELLO L; FROIO T; CAVALLINI G; BIASI F; SAPINO A; LEONARDUZZI G; BERGAMINI E; POLI G; CHIARPOTTO E
File in questo prodotto:
File Dimensione Formato  
Castello et al. FASEB J 2005 1863.full.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 214.61 kB
Formato Adobe PDF
214.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Castello finale 04-2864fjev1.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/100729
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 46
social impact