Asbestos minerals are commonly found in serpentine rocks and because of the hazard to human health, research has recently focused on possible detoxification strategies. Some fungal species that inhabit serpentine sites (two disused chrysotile asbestos mines in the Western Alps) have been isolated and characterized in order to obtain data on their biodiversity and bioweathering abilities on chrysotile fibres. The three dominant species (Verticillium leptobactrum, Paecilomyces lilacinus and Aspergillus fumigatus) have proved to be able to actively remove iron from chrysotile fibres, V. leptobactrum being the most efficient. A wide range of serpentinicolous fungi release siderophores, iron-chelating compounds, that could play a role in iron extraction from fibres. Iron removal had been correlated previously with a decrease in the toxic potential of fibres, and a biotechnological application of fungi can be envisaged for asbestos detoxification.
Bioweathering of chrysotile by fungi isolated in ophiolitic sites
DAGHINO, Stefania;MARTINO, ELENA;TOMATIS, Maura;GIRLANDA, Mariangela;FUBINI, Bice;PEROTTO, Silvia
2008-01-01
Abstract
Asbestos minerals are commonly found in serpentine rocks and because of the hazard to human health, research has recently focused on possible detoxification strategies. Some fungal species that inhabit serpentine sites (two disused chrysotile asbestos mines in the Western Alps) have been isolated and characterized in order to obtain data on their biodiversity and bioweathering abilities on chrysotile fibres. The three dominant species (Verticillium leptobactrum, Paecilomyces lilacinus and Aspergillus fumigatus) have proved to be able to actively remove iron from chrysotile fibres, V. leptobactrum being the most efficient. A wide range of serpentinicolous fungi release siderophores, iron-chelating compounds, that could play a role in iron extraction from fibres. Iron removal had been correlated previously with a decrease in the toxic potential of fibres, and a biotechnological application of fungi can be envisaged for asbestos detoxification.File | Dimensione | Formato | |
---|---|---|---|
17 Daghino et al_2008.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.