We have examined the role that individual TGF-beta isoforms, and in particular TGF-beta3, play in control of epidermal homeostasis. Mice with a knockout mutation of the TGF-beta3 gene die a few hours after birth. A full-thickness skin grafting approach was used to investigate the postnatal development and homeostatic control of the skin of these mice. Grafted skin of mice with a disruption of the TGF-beta3 gene developed similarly to grafts of wild type and TGF-beta1 knockout animals. However, a strikingly different response was observed after acute treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). When exposed to TPA, the grafted skin of wild type and TGF-beta1 knockout mice underwent a hyperplastic response similar to that of normal mouse skin. In marked contrast, TPA treatment of TGF-beta3 knockout grafts induced widespread areas of keratinocyte cell death. Analysis of cultured keratinocytes treated with purified TGF-beta isoforms revealed that TGF-beta3 plays a direct and specific function in protecting keratinocytes against TPA-induced cell death. The protective function of TGF-beta3 on TPA-induced cell death was not because of general suppression of the signaling pathways triggered by this agent, as ERK1/2 activation occurred to a similar if not greater extent in TGF-beta3-treated versus control keratinocytes. Instead, TGF-beta3 treatment led to a significant reduction in TPA-induced c-Jun N-terminal kinase activity, which was associated and possibly explained by specific counteracting effects of TGF-beta3 on TPA-induced disruption of keratinocyte focal adhesions.

TGF-beta3, but not TGF-beta1, protects keratinocytes against 12-O-tetradecanoylphorbol-13-acetate-induced cell death in vitro and in vivo.

CALAUTTI, Vincenzo;
1999-01-01

Abstract

We have examined the role that individual TGF-beta isoforms, and in particular TGF-beta3, play in control of epidermal homeostasis. Mice with a knockout mutation of the TGF-beta3 gene die a few hours after birth. A full-thickness skin grafting approach was used to investigate the postnatal development and homeostatic control of the skin of these mice. Grafted skin of mice with a disruption of the TGF-beta3 gene developed similarly to grafts of wild type and TGF-beta1 knockout animals. However, a strikingly different response was observed after acute treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). When exposed to TPA, the grafted skin of wild type and TGF-beta1 knockout mice underwent a hyperplastic response similar to that of normal mouse skin. In marked contrast, TPA treatment of TGF-beta3 knockout grafts induced widespread areas of keratinocyte cell death. Analysis of cultured keratinocytes treated with purified TGF-beta isoforms revealed that TGF-beta3 plays a direct and specific function in protecting keratinocytes against TPA-induced cell death. The protective function of TGF-beta3 on TPA-induced cell death was not because of general suppression of the signaling pathways triggered by this agent, as ERK1/2 activation occurred to a similar if not greater extent in TGF-beta3-treated versus control keratinocytes. Instead, TGF-beta3 treatment led to a significant reduction in TPA-induced c-Jun N-terminal kinase activity, which was associated and possibly explained by specific counteracting effects of TGF-beta3 on TPA-induced disruption of keratinocyte focal adhesions.
1999
274(7)
4213
4219
Li J; Foitzik K; Calautti E; Baden H; Doetschman T; Dotto GP.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/100997
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact