Early B-cell factor 2 (EBF2) is one of four mammalian members of an atypical helix-loop-helix transcription factor family (COE). COE proteins have been implicated in various aspects of nervous and immune system development. We and others have generated and described mice carrying a null mutation of Ebf2, a gene previously characterized in the context of Xenopus laevis primary neurogenesis and neuronal differentiation. In addition to deficits in neuroendocrine and olfactory development, and peripheral nerve maturation, Ebf2 null mice feature an ataxic gait and obvious motor deficits associated with clear-cut abnormalities of cerebellar development. The number of Purkinje cells (PCs) in the Ebf2 null is markedly decreased, resulting in a small cerebellum with notable foliation defects, particularly in the anterior vermis. We show that this stems from the defective migration of a molecularly defined PC subset that subsequently dies by apoptosis. Part of the striped cerebellar topography is disrupted due to cell death and, in addition, many of the surviving PCs, that would normally adopt a zebrin II-negative phenotype, transdifferentiate to Zebrin II-positive, an unprecedented finding suggesting that Ebf2 is required for the establishment of a proper cerebellar cortical map.

A key role for the HLH transcription factor EBF2 COE2, O/E-3 in Purkinje neuron migration and cerebellar cortical topography

ROSSI, Ferdinando;
2006

Abstract

Early B-cell factor 2 (EBF2) is one of four mammalian members of an atypical helix-loop-helix transcription factor family (COE). COE proteins have been implicated in various aspects of nervous and immune system development. We and others have generated and described mice carrying a null mutation of Ebf2, a gene previously characterized in the context of Xenopus laevis primary neurogenesis and neuronal differentiation. In addition to deficits in neuroendocrine and olfactory development, and peripheral nerve maturation, Ebf2 null mice feature an ataxic gait and obvious motor deficits associated with clear-cut abnormalities of cerebellar development. The number of Purkinje cells (PCs) in the Ebf2 null is markedly decreased, resulting in a small cerebellum with notable foliation defects, particularly in the anterior vermis. We show that this stems from the defective migration of a molecularly defined PC subset that subsequently dies by apoptosis. Part of the striped cerebellar topography is disrupted due to cell death and, in addition, many of the surviving PCs, that would normally adopt a zebrin II-negative phenotype, transdifferentiate to Zebrin II-positive, an unprecedented finding suggesting that Ebf2 is required for the establishment of a proper cerebellar cortical map.
133
2719
2729
CROCI L; CHUNG S-H; MASSERDOTTI G; GIANOLA S; BIZZOCA A; GENNARINI G; CORRADI A; ROSSI F; HAWKES R; CONSALEZ GG
File in questo prodotto:
File Dimensione Formato  
Croci 2006.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 4.94 MB
Formato Adobe PDF
4.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/101722
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 75
social impact