The weakly NP-hard single-machine total tardiness scheduling problem has been extensively studied in the last decades. Various heuristics have been proposed to efficiently solve in practice a problem for which a fully polynomial time approximation scheme exists (though with complexity O(n^7/eps)). In this note, we show that all known constructive heuristics for the problem, namely AU, MDD, PSK, WI, COVERT, NBR, present arbitrarily bad approximation ratios. The same behavior is shown by the decomposition heuristics DEC/EDD, DEC/MDD, DEC/PSK, and DEC/WI.
Lower bounds on the approximation ratios of leading heuristics for the single machine total tardiness scheduling problem
GROSSO, Andrea Cesare;
2004-01-01
Abstract
The weakly NP-hard single-machine total tardiness scheduling problem has been extensively studied in the last decades. Various heuristics have been proposed to efficiently solve in practice a problem for which a fully polynomial time approximation scheme exists (though with complexity O(n^7/eps)). In this note, we show that all known constructive heuristics for the problem, namely AU, MDD, PSK, WI, COVERT, NBR, present arbitrarily bad approximation ratios. The same behavior is shown by the decomposition heuristics DEC/EDD, DEC/MDD, DEC/PSK, and DEC/WI.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JOSH2004.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
111.79 kB
Formato
Adobe PDF
|
111.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.