Using the Goursat representation for the biharmonic function and approximate solutions of a corrected Muskhelishvili equation we construct approximate solutions for biharmonic problems in smooth domains of $\mathbf{R}^2$. It is shown that the sequence of these approximate solutions converges uniformly on each compact subset of the initial domain $D$. Under additional conditions it converges uniformly on $D$. We also provide numerical examples.

Approximate solution of the biharmonic problem in smooth domains

VENTURINO, Ezio
2006-01-01

Abstract

Using the Goursat representation for the biharmonic function and approximate solutions of a corrected Muskhelishvili equation we construct approximate solutions for biharmonic problems in smooth domains of $\mathbf{R}^2$. It is shown that the sequence of these approximate solutions converges uniformly on each compact subset of the initial domain $D$. Under additional conditions it converges uniformly on $D$. We also provide numerical examples.
2006
18
399
413
equazioni integrali; problemi sul bordo
Didenko; E. Venturino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/10332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact