The adsorption of glycine on a clean anatase (101) surface was studied by first principles calculations. Glycine was found to bind to the surface in an undissociated form, utilizing both the carboxyl and the amino groups for the binding. The adsorption energy was found to be 23.0 kcal mol1. Two other configurations were found to be only slightly (by 0.6 and 1.1 kcal mol1) less stable, one binding only through the lone pair of the amino group, the other adopting a dissociated binding mode. The conformational strain of glycine was found to have a significant effect on the adsorption energy. The adsorption properties of the amino and carboxyl functional groups of glycine were compared to those of ammonia and formic acid. While the amino group shows a similar binding energy to that of ammonia, the carboxyl group of glycine is able to create stronger binding to the anatase surface than formic acid.
ADSORPTION OF GLYCINE ON THE ANATASE (101) SURFACE: AN AB INITIO STUDY
FERRARI, Anna Maria;
2010-01-01
Abstract
The adsorption of glycine on a clean anatase (101) surface was studied by first principles calculations. Glycine was found to bind to the surface in an undissociated form, utilizing both the carboxyl and the amino groups for the binding. The adsorption energy was found to be 23.0 kcal mol1. Two other configurations were found to be only slightly (by 0.6 and 1.1 kcal mol1) less stable, one binding only through the lone pair of the amino group, the other adopting a dissociated binding mode. The conformational strain of glycine was found to have a significant effect on the adsorption energy. The adsorption properties of the amino and carboxyl functional groups of glycine were compared to those of ammonia and formic acid. While the amino group shows a similar binding energy to that of ammonia, the carboxyl group of glycine is able to create stronger binding to the anatase surface than formic acid.File | Dimensione | Formato | |
---|---|---|---|
glicina.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.