The immunocytochemical distribution of several neuronal and glial antigens was investigated in the cerebellum of the developing and adult rabbit. Neurofilament positive neurons appeared at embryonic day (E) 25. Purkinje cells transiently expressed neurofilament polypeptides from postnatal day (P) 0 to 15. At later postnatal ages, staining was localised to the parallel fibres, the axonal arbors of the basket cells and fibres of the white matter. Neuron specific enolase (NSE) immunoreactivity was first detected at E25. At P0 Purkinje cells were positive and their staining intensity increased up to P25. From P30 to adulthood virtually all cells in the molecular and Purkinje cell layers were stained. Scattered PGP 9.5-immunoreactive neurons appeared in the cerebellar anlage at P25. Purkinje and Golgi cells were labelled by P0. Synaptophysin immunoreactivity was first observed at P0 in the form of a fine punctate reaction surrounding the perikarya and proximal dendrites of Purkinje cells. By P10, it became particularly intense within the cerebellar glomeruli of the granular layer. Neurons of the deep cerebellar nuclei expressed NSE and PGP 9.5 starting from E25. GFAP and S-100 immunoreactivities were first detected at P10. GFAP-immunopositive astrocytes progressively increased in number up to adulthood. S-100-immunoreactive glial cells were detected throughout the white and grey matter. Bergmann glial cells and their fibres were strongly immunoreactive. Vimentin positive glial cells and fibres were first observed at E15 and persisted up to adulthood. Double labelling experiments using a monoclonal antibody against the proliferating cell nuclear antigen (PCNA), a cyclin synthesised by mitotic cells, showed that neuronal and/or glial polypeptides are expressed only by fully differentiated postmitotic cells. These results indicate that major events in the neurochemical maturation of the rabbit cerebellum occur during the first month after birth, when the same pattern of the adult animal is attained.

The neurochemical maturation of the rabbit cerebellum.

LOSSI, Laura;MERIGHI, Adalberto
1995-01-01

Abstract

The immunocytochemical distribution of several neuronal and glial antigens was investigated in the cerebellum of the developing and adult rabbit. Neurofilament positive neurons appeared at embryonic day (E) 25. Purkinje cells transiently expressed neurofilament polypeptides from postnatal day (P) 0 to 15. At later postnatal ages, staining was localised to the parallel fibres, the axonal arbors of the basket cells and fibres of the white matter. Neuron specific enolase (NSE) immunoreactivity was first detected at E25. At P0 Purkinje cells were positive and their staining intensity increased up to P25. From P30 to adulthood virtually all cells in the molecular and Purkinje cell layers were stained. Scattered PGP 9.5-immunoreactive neurons appeared in the cerebellar anlage at P25. Purkinje and Golgi cells were labelled by P0. Synaptophysin immunoreactivity was first observed at P0 in the form of a fine punctate reaction surrounding the perikarya and proximal dendrites of Purkinje cells. By P10, it became particularly intense within the cerebellar glomeruli of the granular layer. Neurons of the deep cerebellar nuclei expressed NSE and PGP 9.5 starting from E25. GFAP and S-100 immunoreactivities were first detected at P10. GFAP-immunopositive astrocytes progressively increased in number up to adulthood. S-100-immunoreactive glial cells were detected throughout the white and grey matter. Bergmann glial cells and their fibres were strongly immunoreactive. Vimentin positive glial cells and fibres were first observed at E15 and persisted up to adulthood. Double labelling experiments using a monoclonal antibody against the proliferating cell nuclear antigen (PCNA), a cyclin synthesised by mitotic cells, showed that neuronal and/or glial polypeptides are expressed only by fully differentiated postmitotic cells. These results indicate that major events in the neurochemical maturation of the rabbit cerebellum occur during the first month after birth, when the same pattern of the adult animal is attained.
1995
187
709
722
Lossi L;Ghidella S;Marroni P;Merighi A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/103954
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact