High concentration of NO (3) (-) in groundwater has raised concern over possible contamination of drinking water supplies. In addition, the formation of haloacetic acids (HAAs) as by-products during disinfection with chlorine-based agents is still a relevant issue, since HAAs pose serious health hazard. In this work, we investigated the affinity of a precursor of Al-MCM-41 (a mesostructured hexagonal aluminosilicate containing the template surfactant) towards nitrate and HAAs, for its possible application in the removal of these pollutants from natural and drinking waters. Additionally, adsorption kinetics and isotherms were studied. The adsorbent was synthesized using cetyltrimethylammonium bromide as surfactant and characterized by physico-chemical techniques. Simulated drinking water was spiked with the EPA-regulated HAAs (monochloroacetic (MCAA), monobromoacetic (MBAA), dichloroacetic (DCAA), dibromoacetic (DBAA), and trichloroacetic (TCAA) acids) and placed in contact with the adsorbent. The effect of matrix composition was studied. Adsorption kinetic studies were performed testing three kinetics models. For the adsorption studies, three adsorption isotherm approaches have been tested to experimental data. The pollutant recoveries were evaluated by suppressed ion chromatography. The affinity of the adsorbent was TCAA = DBAA = DCAA > MBAA > MCAA with DCAA, DBAA, and TCAA completely removed. A removal as high as 77 % was achieved for 13 mg/L nitrate. The adsorption isotherms of NO (3) (-) and monochloroacetic acid can be modeled by the Freundlich equation, while their adsorption kinetics follow a pseudo-second-order rate mechanism. The adsorbent exhibited high affinity towards HAAs in simulated drinking water even at relevant matrix concentrations, suggesting its potential application for water remediation technologies.

Novel insights in Al-MCM-41 precursor as adsorbent for regulated haloacetic acids and nitrate from water

BRUZZONITI, Maria Concetta;DE CARLO, Rosa Maria;SARZANINI, Corrado;
2012-01-01

Abstract

High concentration of NO (3) (-) in groundwater has raised concern over possible contamination of drinking water supplies. In addition, the formation of haloacetic acids (HAAs) as by-products during disinfection with chlorine-based agents is still a relevant issue, since HAAs pose serious health hazard. In this work, we investigated the affinity of a precursor of Al-MCM-41 (a mesostructured hexagonal aluminosilicate containing the template surfactant) towards nitrate and HAAs, for its possible application in the removal of these pollutants from natural and drinking waters. Additionally, adsorption kinetics and isotherms were studied. The adsorbent was synthesized using cetyltrimethylammonium bromide as surfactant and characterized by physico-chemical techniques. Simulated drinking water was spiked with the EPA-regulated HAAs (monochloroacetic (MCAA), monobromoacetic (MBAA), dichloroacetic (DCAA), dibromoacetic (DBAA), and trichloroacetic (TCAA) acids) and placed in contact with the adsorbent. The effect of matrix composition was studied. Adsorption kinetic studies were performed testing three kinetics models. For the adsorption studies, three adsorption isotherm approaches have been tested to experimental data. The pollutant recoveries were evaluated by suppressed ion chromatography. The affinity of the adsorbent was TCAA = DBAA = DCAA > MBAA > MCAA with DCAA, DBAA, and TCAA completely removed. A removal as high as 77 % was achieved for 13 mg/L nitrate. The adsorption isotherms of NO (3) (-) and monochloroacetic acid can be modeled by the Freundlich equation, while their adsorption kinetics follow a pseudo-second-order rate mechanism. The adsorbent exhibited high affinity towards HAAs in simulated drinking water even at relevant matrix concentrations, suggesting its potential application for water remediation technologies.
2012
19
4176
4183
Haloacetic acids; Nitrate; Removal; Al-MCM-41; Natural and drinking waters; Adsorption kinetics; Adsorption isotherm
M.C Bruzzoniti; R.M. De Carlo; C. Sarzanini; D. Caldarola; B. Onida
File in questo prodotto:
File Dimensione Formato  
Bruzzoniti_ESPR_2012_19_4176.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 393.49 kB
Formato Adobe PDF
393.49 kB Adobe PDF Visualizza/Apri
10.1007_s11356-012-0900-6.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 559.96 kB
Formato Adobe PDF
559.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/104089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact