Protracted neurogenesis occurs at different postnatal stages in different brain locations, whereby leading to site-specific adult neurogenesis in some cases. No spontaneous genesis of neurons occurs in the cerebellum after the postnatal genesis of granule cells from the external germinal layer (EGL), a transitory actively proliferating zone which is thought to be exhausted before puberty. Here, we show the protracted genesis of newly generated neuronal precursors in the cerebellar cortex of young rabbits, persisting beyond puberty. Neuroblasts generated within an actively proliferating subpial layer thus extending the postnatal EGL are arranged to form thousands of tangential chains reminiscent of those responsible for cell migration in the forebrain subventricular zone. These subpial chains cover the whole cerebellar surface from the 2nd to the 5th month of life, then disappearing after puberty. In addition, we describe the appearance of similar groups of cells at the end of granule cell genesis in the mouse cerebellum, here limited to the short period of EGL exhaustion (4–5 days). These results show common features do exist in the postnatal reorganization of secondary germinal layers of brain and cerebellum at specific stages, parallel to differences in the slowing down of cerebellar neurogenesis among mammalian species.

A subpial transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum

PONTI, Giovanna;PERETTO, Paolo Marcello;BONFANTI, Luca
2006-01-01

Abstract

Protracted neurogenesis occurs at different postnatal stages in different brain locations, whereby leading to site-specific adult neurogenesis in some cases. No spontaneous genesis of neurons occurs in the cerebellum after the postnatal genesis of granule cells from the external germinal layer (EGL), a transitory actively proliferating zone which is thought to be exhausted before puberty. Here, we show the protracted genesis of newly generated neuronal precursors in the cerebellar cortex of young rabbits, persisting beyond puberty. Neuroblasts generated within an actively proliferating subpial layer thus extending the postnatal EGL are arranged to form thousands of tangential chains reminiscent of those responsible for cell migration in the forebrain subventricular zone. These subpial chains cover the whole cerebellar surface from the 2nd to the 5th month of life, then disappearing after puberty. In addition, we describe the appearance of similar groups of cells at the end of granule cell genesis in the mouse cerebellum, here limited to the short period of EGL exhaustion (4–5 days). These results show common features do exist in the postnatal reorganization of secondary germinal layers of brain and cerebellum at specific stages, parallel to differences in the slowing down of cerebellar neurogenesis among mammalian species.
2006
294
168
180
PONTI G; PERETTO P; BONFANTI L
File in questo prodotto:
File Dimensione Formato  
Ponti2006DevBiol.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Develop_Biol_2006.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 4.17 MB
Formato Adobe PDF
4.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/104698
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 52
social impact