As alarm calls indicate the presence of predators, the correct interpretation of alarm calls, including those of other species, is essential for predator avoidance. Conversely, communication calls of other species might indicate the perceived absence of a predator and hence allow a reduction in vigilance. This “eavesdropping” was demonstrated in birds and mammals, including lemur species. Interspecific communication between taxonomic groups has so far been reported in some reptiles and mammals, including three primate species. So far, neither semantic nor interspecific communication has been tested in a solitary and nocturnal lemur species. The aim of this study was to investigate if the nocturnal and solitary Sahamalaza sportive lemur, Lepilemur sahamalazensis, is able to access semantic information of sympatric species. During the day, this species faces the risk of falling prey to aerial and terrestrial predators and therefore shows high levels of vigilance. We presented alarm calls of the crested coua, the Madagascar magpie-robin and aerial, terrestrial and agitation alarm calls of the blue-eyed black lemur to 19 individual Sahamalaza sportive lemurs resting in tree holes. Songs of both bird species’ and contact calls of the blue-eyed black lemur were used as a control. After alarm calls of crested coua, Madagascar magpie-robin and aerial alarm of the blue-eyed black lemur, the lemurs scanned up and their vigilance increased significantly. After presentation of terrestrial alarm and agitation calls of the blue-eyed black lemur, the animals did not show significant changes in scanning direction or in the duration of vigilance. Sportive lemur vigilance decreased after playbacks of songs of the bird species and contact calls of blue-eyed black lemurs. Our results indicate that the Sahamalaza sportive lemur is capable of using information on predator presence as well as predator type of different sympatric species, using their referential signals to detect predators early, and that the lemurs’ reactions are based on experience and learning.
Interspecific semantic alarm call recognition in the solitary Sahamalaza sportive lemur, Lepilemur sahamalazensis
GAMBA, Marco;
2013-01-01
Abstract
As alarm calls indicate the presence of predators, the correct interpretation of alarm calls, including those of other species, is essential for predator avoidance. Conversely, communication calls of other species might indicate the perceived absence of a predator and hence allow a reduction in vigilance. This “eavesdropping” was demonstrated in birds and mammals, including lemur species. Interspecific communication between taxonomic groups has so far been reported in some reptiles and mammals, including three primate species. So far, neither semantic nor interspecific communication has been tested in a solitary and nocturnal lemur species. The aim of this study was to investigate if the nocturnal and solitary Sahamalaza sportive lemur, Lepilemur sahamalazensis, is able to access semantic information of sympatric species. During the day, this species faces the risk of falling prey to aerial and terrestrial predators and therefore shows high levels of vigilance. We presented alarm calls of the crested coua, the Madagascar magpie-robin and aerial, terrestrial and agitation alarm calls of the blue-eyed black lemur to 19 individual Sahamalaza sportive lemurs resting in tree holes. Songs of both bird species’ and contact calls of the blue-eyed black lemur were used as a control. After alarm calls of crested coua, Madagascar magpie-robin and aerial alarm of the blue-eyed black lemur, the lemurs scanned up and their vigilance increased significantly. After presentation of terrestrial alarm and agitation calls of the blue-eyed black lemur, the animals did not show significant changes in scanning direction or in the duration of vigilance. Sportive lemur vigilance decreased after playbacks of songs of the bird species and contact calls of blue-eyed black lemurs. Our results indicate that the Sahamalaza sportive lemur is capable of using information on predator presence as well as predator type of different sympatric species, using their referential signals to detect predators early, and that the lemurs’ reactions are based on experience and learning.File | Dimensione | Formato | |
---|---|---|---|
journal.pone.0067397.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
4.56 MB
Formato
Adobe PDF
|
4.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.