Presenting theory while using Mathematica in a coomplementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third Edition of Alfred Gray's Famous Textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray's death, authors Abbena and Salomon have stepped in to bring the book up to date. Maintaining Gray's approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. Containg more than 300 illustrations, the book demonstates how to use Mathematica to plot many interesting curves and surfaces. The authors highlight important theorems with many examples and include 300 microprograms for computing and ploting varius geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.

Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition

ABBENA, Elsa;
2006

Abstract

Presenting theory while using Mathematica in a coomplementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third Edition of Alfred Gray's Famous Textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray's death, authors Abbena and Salomon have stepped in to bring the book up to date. Maintaining Gray's approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. Containg more than 300 illustrations, the book demonstates how to use Mathematica to plot many interesting curves and surfaces. The authors highlight important theorems with many examples and include 300 microprograms for computing and ploting varius geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
CRC Press
1
1
1016
9781584884484
Curve e Superfici Differenziabili; Mathematica
A. Gray; E. Abbena; S. Salamon
File in questo prodotto:
File Dimensione Formato  
PART1.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 8.57 MB
Formato Adobe PDF
8.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
GAS_7.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 6.8 MB
Formato Adobe PDF
6.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
GAS_5.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 9.73 MB
Formato Adobe PDF
9.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
abbena 23.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 721.34 kB
Formato Adobe PDF
721.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
GAS_6.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 8.53 MB
Formato Adobe PDF
8.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
GAS_4.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 8.13 MB
Formato Adobe PDF
8.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/104908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact