Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical–physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T 1, indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, 13C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the 13C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment

CHIEROTTI, Michele Remo;GOBETTO, Roberto;MARTRA, Gianmario;COLUCCIA, Salvatore
2012-01-01

Abstract

Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical–physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T 1, indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, 13C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the 13C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.
402
4
1551
1557
http://link.springer.com/article/10.1007%2Fs00216-011-5265-z
Dead Sea Scrolls – Collagen deterioration – Solid-state NMR – Unilateral NMR
A. Masic; M. R. Chierotti; R. Gobetto; G. Martra; I. Rabin; S. Coluccia
File in questo prodotto:
File Dimensione Formato  
anal bioanal chem2012,402,1551.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 795.86 kB
Formato Adobe PDF
795.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/108139
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact