Given a smooth function $H\colon\mathbb{R}^{3}\to\mathbb{R}$, we call $H$-bubble a conformally immersed surface in $\mathbb{R}^{3}$ parametrized on the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every point. We prove that if $\bar p\in\mathbb{R}^{3}$ is a nondegenerate stationary point for $H$ with $H(\bar p)\ne 0$, then there exists a curve $\theta\mapsto u^{\theta}$ of embedded $\theta H$-bubbles, defined for $\theta$ large, which become round and concentrate at $\bar{p}$ as $\theta\to+\infty$. Also the case of topologically stable extremal points for $H$ is considered.

H-bubbles with prescribed large mean curvature

CALDIROLI, Paolo
2004-01-01

Abstract

Given a smooth function $H\colon\mathbb{R}^{3}\to\mathbb{R}$, we call $H$-bubble a conformally immersed surface in $\mathbb{R}^{3}$ parametrized on the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every point. We prove that if $\bar p\in\mathbb{R}^{3}$ is a nondegenerate stationary point for $H$ with $H(\bar p)\ne 0$, then there exists a curve $\theta\mapsto u^{\theta}$ of embedded $\theta H$-bubbles, defined for $\theta$ large, which become round and concentrate at $\bar{p}$ as $\theta\to+\infty$. Also the case of topologically stable extremal points for $H$ is considered.
2004
113
125
142
http://www.springerlink.com/content/5feyq53b454kbrkx/
Caldiroli P.
File in questo prodotto:
File Dimensione Formato  
manuscripta2004.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 156.54 kB
Formato Adobe PDF
156.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/109553
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact