We study nonlinear interactions in measured surface wave trains obtained in the Northern Adriatic Sea about 16 kilometres from Venice, Italy.Nonlinear Fourier analysis is discussed in terms of the exact spectral solution to the Korteweg-deVries (KdV) equation as given by theinverse scattering transform (IST). For the periodic and/or quasi-periodic boundary conditions assumed herein, the approach may be viewed as a nonlinear, broad-banded generalization of the ordinary, linear Fourier transform. In particular, we study solition interactions, their properties and the nonlinear dynamics of the radiation (or oscillation) modes as found from the inverse scattering transform analysis. We also conduct a number of computer experiments in which measured wave trains are numerically propagated forward in time toward shallow water and backward in time into deep water in order to assess how the nonlinear wave dynamics are influenced by propagation over variable bathymetry. On this basis we develop a scenario for the evolution of nonlinear wave trains, initially far offshore in deep water, as they propagate into shallow water regions. The deep-water waves have a small Ursell number and are hence not very nonlinear; as they propagate toward shallow water, the Ursell number gradually increases in the numerical experiments by about an order of magnitude. A useful parameterization of nonlinearity in these studies is the «spectral modulus,» a number between 0 and 1, which is associated with each IST spectral frequency. Small values of the modulus mean that a particular spectral component is linear (a sine wave); large values of the modulus (≈1) indicate that the component is nonlinear (a soliton). There is a systematic increase of the modulus as the waves propagate into shallow water where nonlinear effects predominate; we describe how the modulus varies as a function of spectral frequency during this shoaling process. The results suggest that the effect of increasing nonlinearity «saturates» the IST spectrum (i.e. the modulus ≈1 for all frequencies) to that virtually all spectral components become solitons in sufficiently shallow water.

Nonlinear shoaling of shallow water waves: perspective in terms of the inverse scattering transform

OSBORNE, Alfred Richard;BERGAMASCO, Laura Maria;SERIO, Marina;
1996-01-01

Abstract

We study nonlinear interactions in measured surface wave trains obtained in the Northern Adriatic Sea about 16 kilometres from Venice, Italy.Nonlinear Fourier analysis is discussed in terms of the exact spectral solution to the Korteweg-deVries (KdV) equation as given by theinverse scattering transform (IST). For the periodic and/or quasi-periodic boundary conditions assumed herein, the approach may be viewed as a nonlinear, broad-banded generalization of the ordinary, linear Fourier transform. In particular, we study solition interactions, their properties and the nonlinear dynamics of the radiation (or oscillation) modes as found from the inverse scattering transform analysis. We also conduct a number of computer experiments in which measured wave trains are numerically propagated forward in time toward shallow water and backward in time into deep water in order to assess how the nonlinear wave dynamics are influenced by propagation over variable bathymetry. On this basis we develop a scenario for the evolution of nonlinear wave trains, initially far offshore in deep water, as they propagate into shallow water regions. The deep-water waves have a small Ursell number and are hence not very nonlinear; as they propagate toward shallow water, the Ursell number gradually increases in the numerical experiments by about an order of magnitude. A useful parameterization of nonlinearity in these studies is the «spectral modulus,» a number between 0 and 1, which is associated with each IST spectral frequency. Small values of the modulus mean that a particular spectral component is linear (a sine wave); large values of the modulus (≈1) indicate that the component is nonlinear (a soliton). There is a systematic increase of the modulus as the waves propagate into shallow water where nonlinear effects predominate; we describe how the modulus varies as a function of spectral frequency during this shoaling process. The results suggest that the effect of increasing nonlinearity «saturates» the IST spectrum (i.e. the modulus ≈1 for all frequencies) to that virtually all spectral components become solitons in sufficiently shallow water.
1996
19
151
176
http://www.springerlink.com/content/96u283k5152t3t62/
Surface waves; shallow and deep water; nonlinearity; solitons
A. R. Osborne; L. Bergamasco; M. Serio; L. Bianco; L. Cavaleri; M. Drago; L. Iovenitti; D. Viezzoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/109597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact