We look for homoclinic solutions for a class of second order autonomous Hamiltonian systems in $\mathbb{R}^2$ with a potential $V$ having a strict global maximum at the origin and a finite set $S\subset\mathbb{R}^2$ of singularities, namely $V(x)\to-\infty$ as dist$\,(x,S)\to 0$. We prove that if $V$ satisfies a suitable geometrical property then for any $k\in\N$ the system admits a homoclinic orbit turning $k$ times around a singularity $\xi\in S$.

Multiple homoclinic solutions for a class of autonomous singular systems in R2

CALDIROLI, Paolo;
1998-01-01

Abstract

We look for homoclinic solutions for a class of second order autonomous Hamiltonian systems in $\mathbb{R}^2$ with a potential $V$ having a strict global maximum at the origin and a finite set $S\subset\mathbb{R}^2$ of singularities, namely $V(x)\to-\infty$ as dist$\,(x,S)\to 0$. We prove that if $V$ satisfies a suitable geometrical property then for any $k\in\N$ the system admits a homoclinic orbit turning $k$ times around a singularity $\xi\in S$.
1998
15
113
125
http://www.numdam.org/item?id=AIHPC_1998__15_1_113_0
Autonomous Hamiltonian systems; singular potential; homoclinic orbits; minimization argument; Palais-Smale sequences
Caldiroli P.; Nolasco M.
File in questo prodotto:
File Dimensione Formato  
AnnIHP1998.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 466.37 kB
Formato Adobe PDF
466.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/110103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact