We look for homoclinic solutions for a class of second order autonomous Hamiltonian systems in $\mathbb{R}^2$ with a potential $V$ having a strict global maximum at the origin and a finite set $S\subset\mathbb{R}^2$ of singularities, namely $V(x)\to-\infty$ as dist$\,(x,S)\to 0$. We prove that if $V$ satisfies a suitable geometrical property then for any $k\in\N$ the system admits a homoclinic orbit turning $k$ times around a singularity $\xi\in S$.
Multiple homoclinic solutions for a class of autonomous singular systems in R2
CALDIROLI, Paolo;
1998-01-01
Abstract
We look for homoclinic solutions for a class of second order autonomous Hamiltonian systems in $\mathbb{R}^2$ with a potential $V$ having a strict global maximum at the origin and a finite set $S\subset\mathbb{R}^2$ of singularities, namely $V(x)\to-\infty$ as dist$\,(x,S)\to 0$. We prove that if $V$ satisfies a suitable geometrical property then for any $k\in\N$ the system admits a homoclinic orbit turning $k$ times around a singularity $\xi\in S$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AnnIHP1998.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
466.37 kB
Formato
Adobe PDF
|
466.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.