We consider the Hamiltonian system in $\mathbb{R}^N$ given by $\ddot u+V'(u)=0$ where $V\colon\mathbb{R}^N\to\mathbb{R}$ is a smooth potential having a non degenerate local maximum at $0$ and we assume that there is an open bounded neighborhood $\Omega$ of $0$ such that $V(x)<V(0)$ for $x\in\Omega\setminus\{0\}$, $V(x)=V(0)$ and $V'(x)\ne 0$ for $x\in\partial\Omega$. Using a refined version of the mountain pass lemma due to Ghoussoub and Preiss, we give a further proof of the existence of a solution to $\ddot u+V'(u)=0$, homoclinic to 0.
A new proof of the existence of homoclinic orbits for a class of autonomous second order Hamiltonian systems in Rn
CALDIROLI, Paolo
1997-01-01
Abstract
We consider the Hamiltonian system in $\mathbb{R}^N$ given by $\ddot u+V'(u)=0$ where $V\colon\mathbb{R}^N\to\mathbb{R}$ is a smooth potential having a non degenerate local maximum at $0$ and we assume that there is an open bounded neighborhood $\Omega$ of $0$ such that $V(x)File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MathNachr1997.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
138.96 kB
Formato
Adobe PDF
|
138.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.