We investigate Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator on cones, both under Navier and Dirichlet boundary conditions. Moreover, we study existence and qualitative properties of extremal functions. In particular, we show that in some cases extremal functions do change sign; when the domain is the whole space, we prove some breaking symmetry phenomena.
On Caffarelli-Kohn-Nirenberg-type inequalities for the weighted biharmonic operator in cones
CALDIROLI, Paolo;
2011-01-01
Abstract
We investigate Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator on cones, both under Navier and Dirichlet boundary conditions. Moreover, we study existence and qualitative properties of extremal functions. In particular, we show that in some cases extremal functions do change sign; when the domain is the whole space, we prove some breaking symmetry phenomena.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MilanJMath2011.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
392.89 kB
Formato
Adobe PDF
|
392.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.