The polarized components of the extrinsic fluorescence of squid giant axons stained with 2,6-MANS or 1,8-MANS were studied. The polarization properties of the fluorescence changes associated with voltage-clamp pulses were found to be very different from those of the static fluorescence, supporting the notion that the optical changes involve highly oriented membrane adsorbed fluorophores. The theoretical expectations according to this hypothesis are discussed in detail. The experimental results are in good agreement with the theory assuming that possible probes reorientations are soley due to the action of the applied electric field upon the probes electric dipole. The quantitative analysis of the data for 2,6-MANS provides a fairly accurate determination of the orientation of the membrane bound 2,6-MANS molecules responsible for the fluorescence changes. Such orientation appears to be independent of the membrane face exposed to staining. The data for 1,8-MANS indicate a very different orientation of this isomer. The results suggest a profitable use of extrinsic fluorophores for studies of the structural organization of nerve membranes.

Fluorescence polarization studies of squid giant axons stained with N-methylanilinonaphthalenesulfonates

CARBONE, Emilio;
1975-01-01

Abstract

The polarized components of the extrinsic fluorescence of squid giant axons stained with 2,6-MANS or 1,8-MANS were studied. The polarization properties of the fluorescence changes associated with voltage-clamp pulses were found to be very different from those of the static fluorescence, supporting the notion that the optical changes involve highly oriented membrane adsorbed fluorophores. The theoretical expectations according to this hypothesis are discussed in detail. The experimental results are in good agreement with the theory assuming that possible probes reorientations are soley due to the action of the applied electric field upon the probes electric dipole. The quantitative analysis of the data for 2,6-MANS provides a fairly accurate determination of the orientation of the membrane bound 2,6-MANS molecules responsible for the fluorescence changes. Such orientation appears to be independent of the membrane face exposed to staining. The data for 1,8-MANS indicate a very different orientation of this isomer. The results suggest a profitable use of extrinsic fluorophores for studies of the structural organization of nerve membranes.
1975
1(3)
221
237
Segnali di fluorescenza; assone gigante di calamaro; 1_6-MANS; voltage-clamp; depolarizazzioni
Carbone E; Conti F; Fioravanti R
File in questo prodotto:
File Dimensione Formato  
Carbone et al Biophys Struct Mechan 1975.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/112323
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact