Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, and the estimation of rare species variety, are to be addressed. Such inferential problems have recently emerged also in genomic applications, however, exhibiting some peculiar features that make them more challenging: specifically, one has to deal with very large populations (genomic libraries) containing a huge number of distinct species (genes) and only a small portion of the library has been sampled (sequenced). These aspects motivate the Bayesian nonparametric approach we undertake, since it allows to achieve the degree of flexibility typically needed in this framework. Based on an observed sample of size n, focus will be on prediction of a key aspect of the outcome from an additional sample of size m, namely, the so-called discovery probability. In particular, conditionally on an observed basic sample of size n, we derive a novel estimator of the probability of detecting, at the (n+m+1)th observation, species that have been observed with any given frequency in the enlarged sample of size n+m. Such an estimator admits a closed-form expression that can be exactly evaluated. The result we obtain allows us to quantify both the rate at which rare species are detected and the achieved sample coverage of abundant species, as m increases. Natural applications are represented by the estimation of the probability of discovering rare genes within genomic libraries and the results are illustrated by means of two expressed sequence tags datasets.

A new estimator of the discovery probability

FAVARO, STEFANO;PRUENSTER, Igor
2012-01-01

Abstract

Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, and the estimation of rare species variety, are to be addressed. Such inferential problems have recently emerged also in genomic applications, however, exhibiting some peculiar features that make them more challenging: specifically, one has to deal with very large populations (genomic libraries) containing a huge number of distinct species (genes) and only a small portion of the library has been sampled (sequenced). These aspects motivate the Bayesian nonparametric approach we undertake, since it allows to achieve the degree of flexibility typically needed in this framework. Based on an observed sample of size n, focus will be on prediction of a key aspect of the outcome from an additional sample of size m, namely, the so-called discovery probability. In particular, conditionally on an observed basic sample of size n, we derive a novel estimator of the probability of detecting, at the (n+m+1)th observation, species that have been observed with any given frequency in the enlarged sample of size n+m. Such an estimator admits a closed-form expression that can be exactly evaluated. The result we obtain allows us to quantify both the rate at which rare species are detected and the achieved sample coverage of abundant species, as m increases. Natural applications are represented by the estimation of the probability of discovering rare genes within genomic libraries and the results are illustrated by means of two expressed sequence tags datasets.
2012
68
1188
1196
http://www.biometrics.tibs.org/
Bayesian nonparametrics; Gibbs-type priors; Rare species discovery; Species sampling models; Two- parameter Poisson–Dirichlet process.
Favaro S.; Lijoi A.; Pruenster I.
File in questo prodotto:
File Dimensione Formato  
FLP_discov.pdf

Open Access dal 03/10/2013

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 607.75 kB
Formato Adobe PDF
607.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/113581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact