Parity-violating quasielastic electron scattering from nuclei is studied within the context of the relativistic Fermi gas model. Three issues are discussed: (i) the merits of such studies for obtaining new information about single-nucleon form factors, especially the roles played by the axial-vector and strangeness form factors, (ii) the degree to which the parity-violating asymmetry is sensitive to specifics of the nuclear model employed, and to a lesser extent (iii) the suitability of using quasielastic scattering from nuclei to test the standard model of the electroweak interaction. It is found that improved limits on the isovector axial form factor could be obtained from a backward angle, moderate momentum transfer measurement, while an experiment performed at forward angles and higher momentum transfer is sensitive to the strangeness electric form factor at a potentially significant level. In addition, it is argued that quasielastic parity-violating scattering is less suitable for high-precision standard model tests than are experiments performed in other sectors, but may provide an interesting new window on nuclear many-body processes.
Parity violating quasielastic electron scattering.
ALBERICO, Wanda Maria;BARBARO, Maria Benedetta;MOLINARI, Alfredo
1992-01-01
Abstract
Parity-violating quasielastic electron scattering from nuclei is studied within the context of the relativistic Fermi gas model. Three issues are discussed: (i) the merits of such studies for obtaining new information about single-nucleon form factors, especially the roles played by the axial-vector and strangeness form factors, (ii) the degree to which the parity-violating asymmetry is sensitive to specifics of the nuclear model employed, and to a lesser extent (iii) the suitability of using quasielastic scattering from nuclei to test the standard model of the electroweak interaction. It is found that improved limits on the isovector axial form factor could be obtained from a backward angle, moderate momentum transfer measurement, while an experiment performed at forward angles and higher momentum transfer is sensitive to the strangeness electric form factor at a potentially significant level. In addition, it is argued that quasielastic parity-violating scattering is less suitable for high-precision standard model tests than are experiments performed in other sectors, but may provide an interesting new window on nuclear many-body processes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.