RATIONALE: A comprehensive study of the environmental fate of pollutants is more and more required, above all on new contaminants, i.e. pharmaceuticals. As high-resolution mass spectrometry (HRMSn) may be a suitable analytical approach for characterization of unknown compounds, its performance was evaluated in this study. METHODS: The analyses were carried out using liquid chromatography (LC) (electrospray ionization (ESI) in positive mode) coupled with a LTQ-Orbitrap analyzer. High-resolution mass spectrometry was employed to assess the evolution of the drug transformation processes over time; accurate masses of protonated molecular ions and sequential product ions were reported with an error below 5 millimass units, which guarantee the correct assignment of their molecular formula in all cases, while their MS2 and MS3 spectra showed several structurally diagnostic ions that allowed characterization of the different transformation products (TPs) and to distinguish the isobaric species. RESULTS: The simulation of phototransformation occurring in the aquatic environment and identification of biotic and abiotic transformation products of the two pharmaceuticals were carried out in heterogeneous photocatalysis using titanium dioxide, aimed to recreate conditions similar to those found in the environmental samples. Twenty-eight main species were identified after carbamazepine transformation and twenty-nine for clarithromycin. CONCLUSIONS: This study demonstrates that HRMS, combined with LC, is a technique able to play a key role in the evaluation of the environmental fate of pollutants and allows elucidation of the transformation pathways followed by the two drugs.

Identification of the unknown transformation products derived from clarithromycin and carbamazepine using LCHR-MS technique

CALZA, Paola;MEDANA, Claudio;GIANCOTTI, Valeria Rachele;BAIOCCHI, Claudio
2012-01-01

Abstract

RATIONALE: A comprehensive study of the environmental fate of pollutants is more and more required, above all on new contaminants, i.e. pharmaceuticals. As high-resolution mass spectrometry (HRMSn) may be a suitable analytical approach for characterization of unknown compounds, its performance was evaluated in this study. METHODS: The analyses were carried out using liquid chromatography (LC) (electrospray ionization (ESI) in positive mode) coupled with a LTQ-Orbitrap analyzer. High-resolution mass spectrometry was employed to assess the evolution of the drug transformation processes over time; accurate masses of protonated molecular ions and sequential product ions were reported with an error below 5 millimass units, which guarantee the correct assignment of their molecular formula in all cases, while their MS2 and MS3 spectra showed several structurally diagnostic ions that allowed characterization of the different transformation products (TPs) and to distinguish the isobaric species. RESULTS: The simulation of phototransformation occurring in the aquatic environment and identification of biotic and abiotic transformation products of the two pharmaceuticals were carried out in heterogeneous photocatalysis using titanium dioxide, aimed to recreate conditions similar to those found in the environmental samples. Twenty-eight main species were identified after carbamazepine transformation and twenty-nine for clarithromycin. CONCLUSIONS: This study demonstrates that HRMS, combined with LC, is a technique able to play a key role in the evaluation of the environmental fate of pollutants and allows elucidation of the transformation pathways followed by the two drugs.
2012
26(15)
1687
1704
clarithromycin; carbamazepine; HRMS
P. Calza; C. Medana; E. Padovano; V. Giancotti; C. Baiocchi
File in questo prodotto:
File Dimensione Formato  
JMS_2012_lyncomicin.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/122554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 56
social impact