An effective and versatile synthetic approach to produce well-dispersed supported intermetallic nanoparticles is presented that allows a comparative study of the catalytic properties of different intermetallic phases while minimizing the influence of differences in preparation history. Supported PdZn, Pd2Ga, and Pd catalysts were synthesized by reductive decomposition of ternary Hydrotalcite-like compounds obtained by co-precipitation from aqueous solutions. The precursors and resulting catalysts were characterized by HRTEM, XRD, XAS, and CO-IR spectroscopy. The Pd2+ cations were found to be at least partially incorporated into the cationic slabs of the precursor. Full incorporation was confirmed for the PdZnAl-Hydrotalcite-like precursor. After reduction of Ga- and Zn-containing precursors, the intermetallic compounds Pd2Ga and PdZn were present in the form of nanoparticles with an average diameter of 6 nm or less. Tests of catalytic performance in methanol steam reforming and methanol synthesis from CO2 have shown that the presence of Zn and Ga improves the selectivity to CO2 and methanol, respectively. The catalysts containing intermetallic compounds were 100 and 200 times, respectively, more active for methanol synthesis than the monometallic Pd catalyst. The beneficial effect of Ga in the active phase was found to be more pronounced in methanol synthesis compared with steam reforming of methanol, which is likely related to insufficient stability of the reduced Ga species in the more oxidizing feed of the latter reaction. Although the intermetallic catalysts were in general less active than a Cu-/ZnO-based material prepared by a similar procedure, the marked changes in Pd reactivity upon formation of intermetallic compounds and to study the tunability of Pd-based catalysts for different reactions.

Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts

GROPPO, Elena Clara;
2012-01-01

Abstract

An effective and versatile synthetic approach to produce well-dispersed supported intermetallic nanoparticles is presented that allows a comparative study of the catalytic properties of different intermetallic phases while minimizing the influence of differences in preparation history. Supported PdZn, Pd2Ga, and Pd catalysts were synthesized by reductive decomposition of ternary Hydrotalcite-like compounds obtained by co-precipitation from aqueous solutions. The precursors and resulting catalysts were characterized by HRTEM, XRD, XAS, and CO-IR spectroscopy. The Pd2+ cations were found to be at least partially incorporated into the cationic slabs of the precursor. Full incorporation was confirmed for the PdZnAl-Hydrotalcite-like precursor. After reduction of Ga- and Zn-containing precursors, the intermetallic compounds Pd2Ga and PdZn were present in the form of nanoparticles with an average diameter of 6 nm or less. Tests of catalytic performance in methanol steam reforming and methanol synthesis from CO2 have shown that the presence of Zn and Ga improves the selectivity to CO2 and methanol, respectively. The catalysts containing intermetallic compounds were 100 and 200 times, respectively, more active for methanol synthesis than the monometallic Pd catalyst. The beneficial effect of Ga in the active phase was found to be more pronounced in methanol synthesis compared with steam reforming of methanol, which is likely related to insufficient stability of the reduced Ga species in the more oxidizing feed of the latter reaction. Although the intermetallic catalysts were in general less active than a Cu-/ZnO-based material prepared by a similar procedure, the marked changes in Pd reactivity upon formation of intermetallic compounds and to study the tunability of Pd-based catalysts for different reactions.
2012
293
27
38
http://www.sciencedirect.com/science/article/pii/S0021951712001601ù
Methanol synthesis; Methanol steam reforming; Intermetallic compounds; Hydrotalcites
Ota A.; Kunkes E. L.; Kasatkin I.; Groppo E.; Ferri D.; Poceiro B.; Navarro Yerga R. M.; Behrens M.
File in questo prodotto:
File Dimensione Formato  
COST_2012_JCatal.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
COST_OA.pdf

Open Access dal 02/09/2014

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/122839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 122
social impact