The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading; to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal. (C) 2000 Elsevier Science B.V. All rights reserved.
Pulse height distribution and radiation tolerance of CVD diamond detectors
LO GIUDICE, Alessandro;MANFREDOTTI, Claudio;VITTONE, Ettore;
2000-01-01
Abstract
The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading; to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal. (C) 2000 Elsevier Science B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.