Renal ischemia-reperfusion (I/R) injury is inevitable in transplantation and is related to long-term graft function. MF-1, a bifunctional hepatocyte growth factor (HGF)-macrophage-stimulating protein (MSP) (HGF-MSP) chimera was recently reported to prevent apoptosis. We therefore hypothesized that treatment with MF-1 would protect kidneys from I/R injury by inhibiting tubular epithelial apoptosis. MF-1 directly guarded cultured proximal tubular epithelial cells from hypoxia-induced necrosis and apoptosis in vitro. In addition, the therapeutic effects of MF-1 were evaluated using a rat I/R injury model in vivo. Saline-treated kidneys had increased creatinine and BUN, and exhibited tubular epithelial apoptosis with activated caspase 3 expression. In contrast, MF-1 treatment up-regulated Akt phosphorylation, and inhibited caspase 3 activation and tubular apoptosis, thereby ameliorating renal dysfunction. Of particular interest is that macrophage infiltration was suppressed in the MF-1-treated kidney. In conclusion, we identified a novel therapeutic approach using MF-1 to protect kidneys from I/R injury.
HGF-MSP chimera protects kidneys from ischemia-reperfusion injury.
MICHIELI, Paolo;
2007-01-01
Abstract
Renal ischemia-reperfusion (I/R) injury is inevitable in transplantation and is related to long-term graft function. MF-1, a bifunctional hepatocyte growth factor (HGF)-macrophage-stimulating protein (MSP) (HGF-MSP) chimera was recently reported to prevent apoptosis. We therefore hypothesized that treatment with MF-1 would protect kidneys from I/R injury by inhibiting tubular epithelial apoptosis. MF-1 directly guarded cultured proximal tubular epithelial cells from hypoxia-induced necrosis and apoptosis in vitro. In addition, the therapeutic effects of MF-1 were evaluated using a rat I/R injury model in vivo. Saline-treated kidneys had increased creatinine and BUN, and exhibited tubular epithelial apoptosis with activated caspase 3 expression. In contrast, MF-1 treatment up-regulated Akt phosphorylation, and inhibited caspase 3 activation and tubular apoptosis, thereby ameliorating renal dysfunction. Of particular interest is that macrophage infiltration was suppressed in the MF-1-treated kidney. In conclusion, we identified a novel therapeutic approach using MF-1 to protect kidneys from I/R injury.File | Dimensione | Formato | |
---|---|---|---|
22_Xue et al_BBRC 2007.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
419.76 kB
Formato
Adobe PDF
|
419.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.