In this paper, the localization of structures in biomedical images is considered as a multimodal global continuous optimization problem and solved by means of soft computing techniques. We have developed an automatic method aimed at localizing the hippocampus in histological images, after discoveries indicating the relevance of structural changes of this region as early biomarkers for Alzheimer's disease and epilepsy. The localization is achieved by searching the parameters of an empirically-derived deformable model of the hippocampus which maximize its overlap with the corresponding anatomical structure in histological brain images. The comparison between six real-parameter optimization techniques (Levenberg-Marquardt, Differential Evolution, Simulated Annealing, Genetic Algorithms, Particle Swarm Optimization and Scatter Search) shows that Differential Evolution significantly outperforms the other techniques in this task, providing successful localizations in 90.9% and 93.0% of two test sets of real and synthetic images, respectively.
Automatic hippocampus localization in histological images using Differential Evolution-based deformable models
DI CUNTO, Ferdinando;GIACOBINI, Mario Dante Lucio;
2013-01-01
Abstract
In this paper, the localization of structures in biomedical images is considered as a multimodal global continuous optimization problem and solved by means of soft computing techniques. We have developed an automatic method aimed at localizing the hippocampus in histological images, after discoveries indicating the relevance of structural changes of this region as early biomarkers for Alzheimer's disease and epilepsy. The localization is achieved by searching the parameters of an empirically-derived deformable model of the hippocampus which maximize its overlap with the corresponding anatomical structure in histological brain images. The comparison between six real-parameter optimization techniques (Levenberg-Marquardt, Differential Evolution, Simulated Annealing, Genetic Algorithms, Particle Swarm Optimization and Scatter Search) shows that Differential Evolution significantly outperforms the other techniques in this task, providing successful localizations in 90.9% and 93.0% of two test sets of real and synthetic images, respectively.File | Dimensione | Formato | |
---|---|---|---|
954534_ca.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
954534_oa.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.