We report QSAR calculations using VolSurf descriptors to model the lipophilicity of 53 Pt(IV) complexes with a diverse range of axial and equatorial ligands. Lipophilicity is measured using an efficient HPLC method. Previous models based on a subset of these data are shown to be inadequate, due to incompatibility of whole molecule descriptors between carboxylato and hydroxido ligands. Instead, the interaction surfaces of complexes with various probes are used as independent descriptors. Partial least squares modelling using three latent variables results in an accurate (R2 = 0.92) and robust model (Q2 = 0.87) of lipophilicity, that moreover highlights the importance of size and hydrophobicity terms and the modest relevance of hydrogen bonding.
Molecular Interaction Fields vs. Quantum-Mechanical-based descriptors in the modelling of lipophilicity of platinum(IV) complexes
ERMONDI, Giuseppe;CARON, Giulia;
2013-01-01
Abstract
We report QSAR calculations using VolSurf descriptors to model the lipophilicity of 53 Pt(IV) complexes with a diverse range of axial and equatorial ligands. Lipophilicity is measured using an efficient HPLC method. Previous models based on a subset of these data are shown to be inadequate, due to incompatibility of whole molecule descriptors between carboxylato and hydroxido ligands. Instead, the interaction surfaces of complexes with various probes are used as independent descriptors. Partial least squares modelling using three latent variables results in an accurate (R2 = 0.92) and robust model (Q2 = 0.87) of lipophilicity, that moreover highlights the importance of size and hydrophobicity terms and the modest relevance of hydrogen bonding.File | Dimensione | Formato | |
---|---|---|---|
Dalton2013.pdf
Open Access dal 06/12/2013
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.