Background and Aim Biotic and abiotic factors contribute in shaping the distribution through the soil profile of elements released by mineral weathering; among them, leaching and biocycling dominate in temperate environments. We evaluated if the intensity of leaching and biocycling of nutrients can be modulated by element deficiencies linked to the abundance of serpentine in the soil parent material, i.e. if the most deficient elements are more efficiently retained. Methods We selected twelve poorly developed soils from Northern Italian beech stands, with variable amounts of serpentinites in the parent material, and determined total and exchangeable Ca, Mg and K, as well as an index of abundance of serpentine minerals. Results The total element content depended on the abundance of serpentines, while only exchangeable Mg was related to the parent material. The vertical trend of Ca and K indicated the role of biocycling in all soils, but the relative availability of Ca (ratio between exchangeable and total content) was much higher in the top horizons of serpentine-rich soils. Conclusions The different element availability among soils suggested that the vertical distribution of available elements was linked to the parent material and that losses were limited in serpentine-rich soils, probably because plants take up the deficient elements as soon as they are released from litter and thus limit their leaching in deeper soil horizons.
Influence of serpentine abundance on the vertical distribution of available elements in soils
BONIFACIO, Eleonora;FALSONE, GLORIA;CATONI, MARCELLA
2013-01-01
Abstract
Background and Aim Biotic and abiotic factors contribute in shaping the distribution through the soil profile of elements released by mineral weathering; among them, leaching and biocycling dominate in temperate environments. We evaluated if the intensity of leaching and biocycling of nutrients can be modulated by element deficiencies linked to the abundance of serpentine in the soil parent material, i.e. if the most deficient elements are more efficiently retained. Methods We selected twelve poorly developed soils from Northern Italian beech stands, with variable amounts of serpentinites in the parent material, and determined total and exchangeable Ca, Mg and K, as well as an index of abundance of serpentine minerals. Results The total element content depended on the abundance of serpentines, while only exchangeable Mg was related to the parent material. The vertical trend of Ca and K indicated the role of biocycling in all soils, but the relative availability of Ca (ratio between exchangeable and total content) was much higher in the top horizons of serpentine-rich soils. Conclusions The different element availability among soils suggested that the vertical distribution of available elements was linked to the parent material and that losses were limited in serpentine-rich soils, probably because plants take up the deficient elements as soon as they are released from litter and thus limit their leaching in deeper soil horizons.File | Dimensione | Formato | |
---|---|---|---|
Bonifacio et al P&S 2013 AperTO.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
2013 Bonifacio et al Plant & Soil.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
650.15 kB
Formato
Adobe PDF
|
650.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.