Let $X^{(n,m)}_{(1,d)}$ denote the Segre-Veronese embedding of $\mathbb{P}^n \times \mathbb{P}^m$ via the sections of the sheaf $\mathcal{O}(1,d)$. We study the dimensions of higher secant varieties of $X^{(n,m)}_{(1,d)}$ and we prove that there is no defective $s^{th}$ secant variety, except possibly for $n$ values of $s$. Moreover when ${m+d \choose d}$ is multiple of $(m+n+1)$, the $s^{th}$ secant variety of $X^{(n,m)}_{(1,d)}$ has the expected dimension for every $s$.
Higher secant varieties of P^n × P^m embedded in bi-degree (1,d)
BERNARDI, Alessandra;
2011-01-01
Abstract
Let $X^{(n,m)}_{(1,d)}$ denote the Segre-Veronese embedding of $\mathbb{P}^n \times \mathbb{P}^m$ via the sections of the sheaf $\mathcal{O}(1,d)$. We study the dimensions of higher secant varieties of $X^{(n,m)}_{(1,d)}$ and we prove that there is no defective $s^{th}$ secant variety, except possibly for $n$ values of $s$. Moreover when ${m+d \choose d}$ is multiple of $(m+n+1)$, the $s^{th}$ secant variety of $X^{(n,m)}_{(1,d)}$ has the expected dimension for every $s$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.